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Pablo González-Nalda ∗,1 Blanca Cases ∗

Abstract

This article depicts the approach used to build the Topos application, a simula-
tion of two-wheel robots able to discern real complex sounds. Topos is framed in
the nouvelle concept of subsymbolic artificial intelligence, applied to the field of
evolutionary robotics. This paper focuses on the simulation of biologically inspired
artificial cochleas and spiking neural networks, in order to model the embodied
control system of the robots. The method chosen to find the most appropriate pa-
rameters that determine robots’ behaviour is evolutionary computation techniques,
with the aim of avoiding any human intervention in this task. As an example of a
real application of this technique, experiments were performed to study the abil-
ity of the robots to distinguish sounds composed of parts of real canary songs and
to navigate to the recognised signal. Results obtained confirm the validity of the
approach.
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1 Introduction

This article depicts the interdisciplinary field that results from applying ba-
sic Neuroscience approaches to a technical discipline known as Evolutionary
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Robotics (described in Subsection 2.3). This work shows that it is possible to
employ evolutionary computation techniques in order to optimise the neural
network that leads to a desired behaviour of simulated robots. This approach
provides more biologically inspired solutions for solving some engineering prob-
lems. Sometimes these techniques are the only way to solve some problems
with no analytical solution. This is an important issue in the evolutionary
robotics field since it is considered as the first step in the development of real
autonomous robots (i.e. not human controlled) that are able to choose and ex-
hibit a concrete behaviour. As an additional contribution of this approach, the
results obtained have the potential to validate further theoretical proposals
on Neuroscience and on Biology.

Genetic Algorithms (see Subsection 2.1) are applied to evolve (in a darwinist
sense) a population of individuals. Each individual is described by a set of
parameters. The evolution tunes both the sensors and the neural network that
control the behaviour of virtual robots by changing the parameters. These
robots capture sounds through the sensors, apply the Fourier Transform to
the received signals, and their Spiking Neural Network process the stimulus to
activate the motors required to exhibit a chosen behaviour. All the parameters
that define the behaviour of each robot (i.e. that tune the sensors and the
neural network) are encoded into the genome of an individual, and a Genetic
Algorithm is applied to obtain the best parameters that respond to a desired
behaviour of the robots.

The problem consisting on the navigation through recognition of sound land-
marks serves to test the approach, implemented by an application called
Topos. This problem allows to use the paradigm defined as Nouvelle Ar-
tificial Intelligence, where there are no boundaries between Sense, Plan and
Act phases.

The sense of hearing was chosen instead of others due to the existence of
less dimensions for sounds rather than for spatial signals like light or for the
sense of touch. This decision facilitates the simulation process without loosing
richness in the signals. Sound landmarks are an example of cues that can be
obtained when observing a non-structured environment, and the navigation
with landmarks is crucial for robots to be able to accomplish their tasks. Such
a goal requires recognition of time patterns in signals that come from some
sensors, which at the same time send activation signals to motors to exhibit
a behaviour. The part of the robots in charge of this recognition task and
consequent motor activation is called the control system of the robot.

The Topos application 2 is a computational model that applies evolutionary
computation techniques to search for the best control system parameters under

2 Topos means place in Greek, and here it reflects the concept of navigation
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a concrete environment. The evaluation of each control system is made by
simulating a rough abstraction of a two-wheel robot and its environment. The
difficulties of a realistic simulation (inertia, motor noises. . . ) are not taken into
account for the sake of simplicity, nor the hunger of computational resources of
the simulation, in order to facilitate and improve the analysis and the increase
the number of experiments.

The behaviour searched for in our studies is the following: given two different
real canary sounds, the virtual robot has to differentiate them and to approach
the place where one of the sounds is being emitted. This scheme allows to
know whether the robot discriminates the correct signal and shows its ability
to move towards the source. Other sounds than canary songs could have been
chosen from a wide range of real samples such as music or animal sounds, or
they could also be generated, like white or pink noise. The song of birds was
chosen since it is decomposable in three different parts separated by silence,
and allows to compose two sequences that differ only in a twist of the last two
parts (ABC-ACB like order). Computational overhead makes it necessary to
limit the sound length and the number of parts of the birdsong used to compose
the sound. At first, the problem described might be considered trivial or too
simple as to be interesting, although so far the literature in the evolutionary
robotics field does not provide any work able to accomplish a similar task with
complex and dynamic signals.

In most cases the models in Computational Neuroscience perform abstrac-
tions and test models of single neurons with random inputs, and often lack
a whole-agent dimension [31]. This work in evolutionary robotics tries to fill
the gap between the abstract models in Neuroscience and the use of neural
networks such as a robot controller. This application is based on a embodied
and situated bio-inspired neuronal model that carries out a complex signal
recognition task. The inputs and outputs are linked through the sensorimotor
loop, and they have to deal with analog time-signals.

The outline of this work is as follows: the following section presents some topics
related to Artificial Intelligence (AI) and Robotics, as the basics of Genetic
Algorithms and the way of modelling phonotaxis (Subsection 2.1). Subsec-
tion 2.2 draws on the two different perspectives for AI, and Subsection 2.3
describes the context of evolutionary robotics within AI.

Section 3 describes the design of the agents and the representation of the
environment of Topos system. Subsections 3.2 and 3.3 are devoted to the de-
scription of the auditory system and the spiking neural networks for temporal
pattern recognition in complex sounds, respectively.

The next section presents the experimental results. Experimental data in Sub-
section 4.1 proves the correction of Topos when stimulating with simple
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signals. Subsections 4.2 and 4.3 describes experiments that corroborate the
capacity of the system in the distinction between real canary songs and the
robustness to background sounds and noises, respectively. Finally, the conclu-
sions show some considerations and suggest some lines of development and
application of this work.

2 Artificial Intelligence and Robotics

This section presents some AI techniques and concepts that determine the
approach used to face this work in Robotics.

2.1 Genetic Algorithms and Braitenberg Vehicles

This work evolves a population of virtual robots with the help of genetic
algorithms, a well-known paradigm in AI to solve optimization problems as
heuristic search in a space of states [1–3]. As in any evolutionary computation
technique, a pool or set (population) of possible solutions (individuals, and in
this case, robots) is maintained for a concrete problem. The traditional way
to represent solutions is in binary, as strings of 0s and 1s, but in this work
and others, the encoding uses an array of real numbers that describes the
characteristics that can vary.

All the individuals are evaluated with a fitness function that quantifies the
correctness of each solution for solving the problem. When using the elitist
approach, the best individuals from each generation are kept and the rest are
discarded. Some individuals survive to the next generation without changes
(the elite), and the rest of individuals (used as parents) undergo a crossover
and mutation operators. These genetic operators create other possible solu-
tions (mixing the bit strings that represent their parents) that are hoped to
be more promising in order to improve inherited attributes. The iteration of
this process of evaluation, selection and mix, forces the population to improve
the fitness values.

In this paper, the concept of phonotaxis and the navigation with sound land-
marks is implemented with the help of Braitenberg Vehicles [4]. Braitenberg
vehicles are thought experiments based on tropism and taxis: the movements
of plants and animals toward or away from a stimulus. The Braitenberg vehi-
cles that exhibit positive taxis are symmetric devices composed of two frontal
sensorial inputs together with a free wheel and two back wheels propelled by
motors. The vehicle is governed by a circuit that makes a crossed connection
from the left sensor to the right motor and from the right sensor to the left
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motor. If the left sensor is fired, the right motor speeds up and the vehicle
runs turning to the left; when the left sensor receives the signal, the vehi-
cle advances turning to the right, until the vehicle reaches the source of the
stimulus.

2.2 The two approaches to Artificial Intelligence

In the last two decades, AI has entered upon a veritable revolution due to the
influence of new fields such as artificial life, which provided the conceptual
framework for this work.

Artificial life (AL) is the study of artificial systems in which we can observe an
analogous functioning to that of real biological systems [5,6]. This is comple-
mentary to AI because one of the aims of AL is intelligence, but in a bottom-up
and incremental way. Another goal of AL is the simulation of adaptive and
life-like behaviours [7].

Important changes in the classical foundations of robotics in AI come from
some works in which Brooks affirms that intelligence requires situatedness and
embodiment [8–10]. A system is situated when it does not deal with abstract
descriptions of the world. The agent must operate within the real world and
cope with time problems. An embodied system depends on the influence of
its own physical body interacting with the environment. Brooks also describes
two approaches to artificial intelligence:

Classical AI: founded on the symbol system hypothesis, it is based on the
assumption that the outputs of sensors are symbols, so the reasoning system
is built apart isolated from sensors and motors [3]. This scheme is known as
the Sense-Plan-Act model [9]. The system works in a domain independent
way, and only when the observer assigns the meaning to the symbols the
whole system is grounded and makes sense 3 .

Nouvelle AI: based on the physical grounding hypothesis. The system has
to build its representations grounded on the physical world. The world is its
own best model. Following this, the system has to be built in a bottom-up
manner. The meaning of every part of the system lies on the environment
through interfaces, sensors and motors. Symbols and representation are not
needed, or at least the designer does not have to define symbols, that is,
there are no human generated symbols. The symbols of the system emerge
from the system dynamics, and are not defined in design.

A situated agent can be described as a dynamical system coupled with its

3 As Brooks says “[central] representations are not necessary and appear only in the
eye or mind of the observer” [9] and “Intelligence is in the eye of the observer” [10]
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environment [11]. The agent can also be defined as a dynamical control system
coupled with the body. The body is considered as a dynamical system because
of its physical dynamics. Hence, a natural way to implement situatedness is
by means of dynamical artificial neural networks. If the system is physically
grounded, the system structure links the world and the actions of perception,
planning and action in a continuum. It is impossible to set boundaries among
them, in contrast to the Sense-Plan-Act scheme, where explicit modules and
interfaces are defined.

2.3 Artificial Intelligence and Evolutionary Robotics

The work presented in this paper is at the cross-point of AI and artificial
life, in the nouvelle conception of artificial intelligence, applying techniques
of evolutionary robotics. Efforts were concentrated on developing a biologi-
cally inspired simulation of robots. The main parameters that characterise a
two-wheel robot are taken into account in order to obtain a real embodied
and situated robot in a further development of this work. In this bio-inspired
framework, spiking neural networks are applied to model the control system
of the robots.

It is difficult to design control systems for autonomous robots by hand, es-
pecially if the work applies an emergent scheme of subsymbolic systems [9].
Some works propose the use of Genetic Algorithms to achieve the desired be-
haviour (in our work, navigation through landmark recognition) with minimal
human design [12–14]. This technique is called evolutionary robotics, a young
discipline based on the work developed by Brooks [8], Koza [15], Beer and Gal-
lagher [16], Floreano and Mondada [17], and Harvey, Husbands and Cliff [18].
The term evolutionary robotics was introduced by Peter Cariani in 1987 in a
unpublished work, as explained by Harvey et al. [19].

To sum up, evolutionary robotics is the development of the control system
of a robot (in simulation or not) testing possible robot configurations and
choosing the fittest ones in order to form the next generation of solutions,
until one or some robots perform the task correctly. As the task can resemble
the behaviour of a living being, we also use the word behaviour to name the
task.

3 Topos

The Topos application was introduced for the first time in [20,21]. Topos
evolves, with the help of Genetic Algorithms, a population of virtual robots
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in a simulation to make them capable of recognising sounds.

3.1 The problem

Each robot is evaluated and assigned a fitness value according to the ability of
recognising and choosing one of a total of two different sounds. The problem
with two sounds is the simplest one for the system to be defined, and also
for allowing to analyse whether the robot recognises sounds correctly. A robot
passes to the next generation if it performs well in a number of trials in a
skinner box-like scheme [22]. The robot has to reach the source of a sound
and avoid the other source, choosing the correct one by recognition of sounds.
Which sound is the goal is determined for each experiment (the whole run
of the genetic algorithm) by the fitness function. The roubots use sounds as
navigation landmarks.

This problem links the sound recognition to the motor system of the robots.
The robot has to recognise a temporal pattern in order to choose the right
source (perception), and it has to navigate (action) to that source by spatially
locating and isolating it perceptually from the other source. This is important
because it is consistent with the approach based on Nouvelle AI and the claim
that the Sense-Plan-Act model is not necessary.

The fitness function defines a landscape in the state space. If it is not too
rough the solution can evolve so to climb to local or global maxima, since the
fitness value is closely related to the mean ability to solve the problem, that
is, the robots get closer and closer through generations.

“Learning” in the skinner-box occurs with phylogenetic adaptation. The rein-
forcement of the appropriate innate behaviour is the survival of the individual
or the heredity of the behaviour to its offspring, and the behaviour that does
not give adaptation to the problem is not inherited. The robot does not change
in any value during the evaluation. There is no hebbian learning nor other
type of ontogenetical adaptation through modifications of the structure of the
robot, that remains as the codified in the genome (numerical description of
the virtual robot). Recombination and mutation are the tools that create new
individuals that can perform better or not.

In each trial the correct sound is randomly placed in one of two points that
are equidistant to the robot, so the correct sound can be on the right or on the
left. The other sound is placed in the remaining place. For each trial a score is
calculated. At the end of the trials the fitness value for this robot is the sum of
the scores. The score of a trial is initially of 10000 units. The minimal distance
d to the correct source and d̄ to the wrong source is calculated for each test as
the robot moves and gets closer or not. See the figure 1 for some examples of
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Fig. 1. Spatial trajectories from some start points for a developed robot that in-
stinctively gets closer to the sound coming from the source A and avoids sound
from B

trajectories performed by a evolved robot that distinguishes the sound from
the figure 9 and can reach the correct source A and avoid the wrong one, in
spite of the starting point.

The fitness of the individual is incremented (or decremented) by 10(d̄2 − d2).
The greater the score, the better the robot has performed. If the robot reaches
the target zone of the correct source (hit), a bonus of 8000 units is added.
Symmetrically, 8000 points are decremented when the robot reaches the wrong
source (miss). This fitness value is an indirect measure of the behaviour of a
robot and its a neural network and sensors. If the individual performs well,
its spiking neural network is appropriate to the task, and no other value is
necessary for the genetic algorithm to function.

An elite (the individuals with highest scores in the test, see Section 2.1) is
selected for survival to the next generation (25%) and the other places in the
fixed size population (75%) are filled with crossover of two parents. Parents are
chosen from the past population (elite included) with a uniform probability,
excluding the worst fitted individuals from the lower fourth of the ranking
(25%). The optimization of fitness values can be seen in the figure 2.

The simulation of these two-wheel robots is symmetric by design [23], in order
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Fig. 2. Maximum and mean values of the fitness values (Y axis) obtained by the
individuals in each generation (X axis) during the run of the genetic algorithm

to facilitate the structure of a Braitenberg vehicle (see Section 2.1). The robot
has two ears and two motors. The difference of velocity produces rotation,
the same mechanism used in two-wheel robots and emulators. Motor neurons
feed motors in a integration fashion, calculating the mean of time passed since
motor neurons sent spike to motors. The lower the mean, the faster the wheel.

3.2 The auditory system of Topos

Mammals process sound signals by means of the auditory system in conjunc-
tion with the nervous system [24,25]. The mammalian auditory system has
three parts that transform sound waves into input signals for the nervous sys-
tem. The external ear modifies the signal that comes from the sound sources
depending on the hearing angle and funnels waves into the auditory channel
causing the vibration of the tympanic membrane. The middle ear transfers
that movement of the membrane through a chain of bones (malleus, incus,
and stapes) to the oval window of cochlea determining the dynamic range of
the sound. Finally, the oval window causes a movement of fluid in cochlea,
ultimately resulting in stimulation of cochlear hair cells which excite neurons
of spiral ganglion that send spike coded auditory signals to the brain through
the cochlear nerve.

The symmetric structures of the human brain that estimate the azimuth of
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Fig. 3. Process of hearing.

the incoming sound are still under study. It is known that the superior olivary
nucleus of brain performs this task. The medial superior olive measures the
time differences (important when perceiving low frequencies) and the lateral
superior olive measures the level differences for high frequency sounds [27,28].
Some results of the work presented in this paper could be compared to these
structures.

The acquisition of sound is simulated through the modelling of a cardioid
microphone. Thus, the physics of a real microphone is included in the model
applying a cardioid-shape function to the received signal as a way to represent
the pinna (external ear). The sound is dampened multiplying the amplitude of
every frequency (in the simplest scheme) proportionally to the hearing angle
(multiplied by 0.0 if sound comes from the back, and by 1.0 if from the front).
The emulation of a microphone will allow for an easy embodiment in a real
robot. These two cardioid microphones that act like external ears have an
angle (one to the right and one to the left) from the front-rear axis of the
robot, as can be seen in the figure 3. This angle is genetically determined as
a part of the structure of sensors.

The simulation could add more details, e.g. the shape and materials of the
robots that can modify the received sound with delays and filters, but these
were discarded to decrease the complexity and the runtime of the simulations.

If we simplify non-linear effects, we can say that the cochlea performs a Fourier
Transform of the sound waves, and this is basically the input received by the
nervous system [24]. The Fourier Transform takes a wave over time (i.e. a
sound sample) as input and produces the vector of complex numbers repre-
senting the amplitude and phase of each interval of frequency (the spectrum).
In sound-processing computer programs we can see sound in this type of rep-
resentation (figure 4). Topos uses a proportional scale, but a logarithmic one
could be used (musical notes) by simply converting the samples to this scale.
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Fig. 4. The frequency spectrum of a bird chirp. Time in seconds (horiz), frequency
in Hz (proportional scale, vert), and highest amplitudes in yellow.

The sound sensors select values from the Fourier Transforms to feed the neu-
rons with their genetically defined activation weight. The sensors are an ab-
straction of the ones described in [29] (see the figure 5). The Fast Fourier
Transform Algorithm divides the frequency spectrum (3kHz) in 64 propor-
tional strips, because this algorithm needs a power of two.

Each sensor reads information from a strip of the range of frequencies (its
characteristic frequency) and takes the values from adjacent strips with less
weight. Each strip has a range of 47 Hz, so a deep bass sound is represented
in the first strip. This sound will excite a sensor whose central frequency is
the second strip, but with less intensity. The value of 3kHz as the width of
the frequency spectrum is the Nyquist frequency, half the minimum (6kHz)
sampling rate allowed by the common sound-processing programs [26]. The
reason is simple: the lower the sample rate, the lower the computational cost
because of the runtime of simulations.

The sensors can react weakly or strongly to close frequencies to the central
frequency, depending on the genetic design. There are ”wide” and ”narrow”
sensors, depending on wether they have a high value in this parameter. The
sensors also have a threshold and saturation level. These parameters define
a V -shape line similar to that in figure 5 where real data can be seen. This
figure is a biological inspiration to design the sound sensors used in Topos.
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Fig. 5. Experimental data measured with electrodes implanted in starlings. The solid
line shows the activation threshold for each frequency. The neuron reacts higher
when frequency and amplitude draw a point in the area of the solid line. Figure and
caption taken from [29]. Original caption: Example of a response matrix defining the
tuning characteristics. The height of the bars indicates the number of impulses per
frequency-level combination. An FTC (solid line) and inhibitory side-bands (dotted
lines) are added according to the threshold criteria described in the text.

3.3 Spiking Neural Networks for temporal pattern recognition in complex
sounds

With the sensors described earlier, the robot has to cope with a large amount
of dynamical information. For this task and in order to resemble the structure
and behaviour of real neurons, we have chosen to develop a type of spiking
neurons.

Beer’s and others’ work in evolutionary robotics use Continuous Time Recur-
rent Neural Networks (CTRNN) [30,19]. As can be seen in formula 1, each
neuron i has a value τi to control its time rate of variation. The function σ
quantifies the firing rate of the neuron.

ẏi =
1

τi

·

−yi +
N∑

j=1

wji · σ (yj + θj) + Ii

 σ(x) =
1

1 + e−x
(1)

We also use a recurrent model but with a spiking-type of neurons that are
able to code the information in pulse trains and time delays and has a fixed
strength spike when the potential of the neuron overflows the threshold.

Spikes travel through axons with a speed and time delay until they reach the
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Fig. 6. The internal structure of an individual is shown.

weighted synapses. Inhibitory synapses can block the spike in the postsynaptic
neuron. The synapses do not retain the value so the only mechanisms to delay
the answer to the stimuli are axon delays and cycles of the network.

The dynamics of the neuron activation can be expressed as a function of time
that starts when the sum of weighted synapses overflows the threshold. It has
(as the formula 2 shows, being at the description of a spike and t the time,
and α and β positive coeficients) a part of exponential attenuation and a part
of oscillation that allows for a refractory period.

at = e−αt · cos(βt) (2)

The spiking neural network implemented in Topos has only recently been
used in evolutionary robotics [31–33]. However it has been used in other works
under the name of Pulsed Neural Networks [34].

The topology of the artificial neural network is shown in figure 6. Two fully-
recurrent subnets are symmetric and interconnected.

These artificial neural networks show a rich variety of behaviour (including
chaotic dynamics) [30]. The most important characteristics of these networks
are the following: they can integrate perceptions over time before actions [35];
they are biologically plausible [36]; they can process time information (delay
among stimuli); and they are mathematically equivalent to sigmoid networks,
more robust to noise, and sometimes requiring significantly fewer neurons [32].
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4 Experiments

An experiment is a run of the genetic algorithm given two sounds and a
initial population of randomly-generated robots. For a generation, each robot
is evaluated in a number of trials and gets a fitness value (see section 3). At the
end of the run of each experiment, an elite formed by 25% of individuals with
better fitness is selected and their efficiency in solving the problem is measured
and represented in a graphic that shows the ability of the best robots of the
population to identify a given sound, navigating towards it. Two histograms
describe each experiment, one for EFA and one for EFR. These two variables
measure the ability of each robot to distinguish the two sources, instead of the
fitness used for evolution:

• absolute effectiveness (EFA) = hits/trials
• relative effectiveness (EFR) = hits/(hits+misses)

A hit occurs when a robot reaches a circle around the correct source of a
given radius (the distance between sources divided by 4), and a miss when the
individual crosses the frontier of the incorrect source.

4.1 Some experiments that prove the correctness of the system

To prove that the Topos system works correctly and to set some basic results
as a test collection, we prepared some experiments (from left to right and from
up to bottom in figure 7):

Dependency of the stimuli (Experiment SS): the absolute and relative
efficiency are 0 for all the individuals if both sources are Silent. The con-
clusion is that the robots are able to navigate only if they have a sound
stimulus.

Positive phonotaxis (Experiment MS): the population evolves to iden-
tify a sample of Music in one source, the second being Silent. The source
they have to reach is the Music (the first letter in the two-letter code). We
obtained the typical behaviour of a type of Braitenberg vehicles [4] (positive
phonotaxis) with absolute and relative efficiency near 100%.

Incapability to distinguish identical sounds (Exps. MM and WW):
in this case the same sample of Music is used for the two sources, and the
starting point of the sample is randomly set at each source. The robots
have to get closer to the correct source, but since both sources emit the
same sound there is no clue to navigate. The consequence is a low score of
hits and as many hits as fails. Most individuals (30%) in the elite obtain 0%
of efficiency. The WW experiment is basically the same as the MM experi-
ment but the two sources emit White noise. The relative efficiency follows a
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Fig. 7. Four basic experiments to test the correctness of the system. Two histograms
for each experiment, the upper representing the EFA and the lower showing the
EFR. The histograms represent the amount of individuals in the last elite that get
that percentage of efficiency. Analysis in the text.

normal distribution with mean in 50% of hits and misses, plus some robots
with EFA and EFR equal to zero. As in the previous experiment, there
is a number of robots that do the task sometimes and get high scores in
EFR but low in absolute effectiveness (up to 35% gives no correct answer
or simply no answer, that is, EFA is zero).

These experiments show that the robots need the ability to differentiate the
sounds to perform the task of navigation towards the correct source.
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Fig. 8. Histograms for the experiment that uses pink noise and white noise, on the
left; histograms of the experiments with two birdsongs from the figure 9, on the
right.

4.2 The efficiency of Topos to recognise complex signals

The experiments described in Section 4.1 prove the correctness of the Topos
system. Then, the ability of the individuals to recognise complex signals (i.e.
the sounds found in nature) is analysed.

Pink noise is a common natural sound. In figure 8 the results of the PW
experiment are presented. The experiment evolves a population to navigate
towards a source of pink noise and avoiding a source of white noise. As can be
seen, adapted individuals (result of the evolution) are able to correctly select
the pink source with an efficiency score close to 100%. Relative effectiveness
of 100% means the absence of errors. An experiment in which the robots have
to avoid the pink noise and reach the white noise produces the same results.
Other experiments with two slightly different parts of a rock song also produce
good results.

The PW experiment also shows that the robots can choose the pink noise, a
sound with less amplitude for most of the frecuencies, and avoid the louder
white noise.

In a second experiment, the sounds are real canary-bird chirps. We have used
parts of a birdsong as another usual sound in nature, but any type of sound
could be chosen. The two samples sound simultaneously but the starting point
is selected at random. The robots could use the “trick” of discrimination by
filtering frequencies with the sensors, as some animals do (and probably used
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Fig. 9. The frequency spectrum of the sounds prepared from a bird chirp. The
experiment prepared to test the Topos system uses the upper sequence in a sound
source and the lower in the other source. Note that the only difference is the order
in its parts, permuted like ABC and ACB, or in words “per” and “pre”. Time in
seconds (horiz), frequency in Hz (vert), and highest amplitudes in yellow.

in the PW experiment). An example is that crickets only react to chirps from
their own species [37]. In order to avoid this trick, we use the same sound
but with a different order in its parts, like ABC and ACB (see figure 9). Fig-
ure 8 shows the high scores of absolute and relative efficiency of the system
in recognising such a complex signal. Almost a half of the elite performs per-
fectly (EFA is 100%) and nearly all of them (more than 80%) are able to
recognise the correct sound. The behaviour of the robots when performing the
navigation task can be seen in figure 1, and the fitness values in the genetic
algorithm in figure 2.

4.3 Robustness to background noises

Background noises interfere with the intelligibility and ease of perceiving
sounds. These experiments show the robustness to sounds that perturb the
recognition of the birdsongs used in previous experiment.

In the first of these experiments there are two additional sounds emitted from
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Fig. 10. Histograms for the experiment that has additional background sounds com-
posed of drums and rock music.

Fig. 11. Maximum and mean values of the fitness values obtained by the individuals
in each generation during the run of the genetic algorithm for the experiment that
has background noises. Compare to figure 2.

random places (near to the main sources) during each trial. These sounds are
composed of a number of different drums and rock music.

In figures 10 and 11 the data reveals that it is more difficult for the robots
to distinguish the two birdsongs, comparing to the histograms on the right in
figure 8 and 2. They are able to achieve it most of the times but not always
due to the perturbation that prevents the hearing. A 85% of the trials they
manage a hit (EFA), and the proportion between hits and misses (EFR) is
not as good as in the second experiment (section 4.2).
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Fig. 12. Histograms for the experiment that has two additional sources of white
noise.

Fig. 13. Histograms for the experiment that has four additional sources of white
noise.

The figures 12 and 13 show that the ability to perform the task decreases as
the number of additional sources of white noise increases. It is more difficult,
but not impossible, to distinguish between the birdsongs when the background
noises are white noise, compared to the ones composed of music and drums
(see figure 10), but the robots get quite good scores and try to perform the
task (compare to figure 7).
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5 Conclusions

This paper describes the Topos application and the considerations that have
been made to build this simulation of two-wheel robots. Evolutionary Robotics
techniques allow to obtain the embodied control system of the robot by evolu-
tion. The control system is composed of biologically inspired artificial cochleas
and spiking neural networks. The embodied system has physical grounded
symbols because the simulation is based on the nouvelle artificial intelligence.
Some experiments confirm the validity of the approach through the study of
the ability of the robots to distinguish between real canary songs. The system
could be applied to any type and combination of dynamical signals, since they
can distinguish signals using frequencies and time characteristics.

Due to the problem of overconvergence in genetic algorithms, the robots learn
too much of what to do, that their neural networks lose the capacity of gener-
alising and recognising other sounds than learnt ones. A larger set of training
couples of sounds could solve this problem but requires a much longer runtime.
Also, a set of different test sounds with a working robot (that can distinguish
between the training sounds) would allow to detect the characteristics used to
perform the recognition.

This system broadens the perspective both from the technical and epistemic
points of view, since it is possible to develop such a robot and we have gained
further information to study cognition. The functioning of the neural network
is an interesting and difficult area. The work in progress shows that the delays
and weights in axons and the position and shape of the sensors can be what
the robots need in order to discriminate the sounds.

In real world robot applications, motor and other background noises have a
severe impact on auditory recognition. This work has discovered that adding
background noises has little impact on robot navigation and the fitness of its
population, and that noise has hardly any impact at all.

Further work is the research of the addition to the model of noises from the
motors of the robot, since it is a way to implement the propioception. This
interesting topic deserves time and careful research because the hypothesis
that has to be rigorously proven, is that propioception improves navigation.

Two basic points to deal with in a further development of the system are, on
the one hand, the computational costs of the trials (due to the complexity
of the simulation) through the run of the genetic algorithm, with some trials
per individual (from ten to twenty trials) and thousands of complex robots
each generation (up to ten minutes per generation, it takes days of a powerful
computer); and on the other hand, the morphogenesis or the difficulty of
evolving such a complex structure more than the variation in parameters (e.g.
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the shape of the robot), and maybe the need of a non-linear expression of the
information coded in the genome. This is a common and generic problem of
scalability in evolutionary robotics.
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