
ROS tutorial

Thomas Moulard

LAAS robotics courses, January 2012

T. Moulard˜˜() ROS tutorial January 2012 1 / 32

So what is ROS?

A component oriented robotics framework,
A development suite,
A (bad) package management system,
An (active) community.

T. Moulard˜˜() ROS tutorial January 2012 2 / 32

Why should I care?

Because a PhD is short.
Because we are all “standing on the shoulders of giants”.
If you are currently implementing one of the following things, you are
doing it wrong : quaternion, rotation matrix, kinematics, graph
computation, etc.
Because some of you will work on the PR2 and have no choice ;)
Because there is cool stuff on ROS. . .

T. Moulard˜˜() ROS tutorial January 2012 3 / 32

But first. . .

We will play with ROS and ROS is huuuuuuge. If you do not have it yet
on your laptop, install it now!
If you do not have a Ubuntu system, work with someone as two hours is
probably not enough to download and compile ROS entirely!

Instructions are here:
http://ros.org/wiki/ROS/Installation

T. Moulard˜˜() ROS tutorial January 2012 4 / 32

http://ros.org/wiki/ROS/Installation

ROS as a framework (1)

The ROS framework is component oriented.
Each component is called a node. Nodes communicate using topics or
services.

topics represents data-flow. For instance: camera images, robot
configuration or position can be model as topics. Topics
values are often published regularly to keep the whole system
up-to-date.

services represents queries which are sent asynchroneously, and
usually at a low frame-rate. Slow components such as
motion planning nodes for instance usually provide services.

T. Moulard˜˜() ROS tutorial January 2012 5 / 32

Topics (1)

Each node can listen or publish on a topic.
Messages types are defined using a dedicated syntax which is ROS specific:
MyMessage.msg

this is a very useful comment!
Float64 myDouble
String myString
Float64[] myArrayOfDouble

T. Moulard˜˜() ROS tutorial January 2012 6 / 32

Topics (2)

The authorized types are:
Built-in types string, float (32 or 64 bits), integer, booleans and Header.
Messages defined in other packages MyOtherPackage/CustomMessage

Arrays of authorized types WhatEver[] is an array of WhatEver.

It produces structures which can be serialized and unserialized
automatically and transparently between different platforms and
programming languages. ROS supports mainly C++ and Python for its
API and Linux (Ubuntu) for its platforms.
This is changing slowly (more platforms, less/different programming
languages).

T. Moulard˜˜() ROS tutorial January 2012 7 / 32

Services

Each node can call or provide one or more services.
To declare a type of service, the syntax is pretty similar:
MyService.srv

Float64 x
Float64 y

Float64 result

The dashes separates the query type from the response type. The
authorized types are the same.

T. Moulard˜˜() ROS tutorial January 2012 8 / 32

Parameters

Each node can also set or get one or more parameters. Some are public
and can be modified by other nodes. The other are private and are
defined at startup only.

In the ROS documentation:
publicParameter is a public parameter,
˜privateParameter is a private parameter.

Optionally, dynamic reconfigure can be used to change the parameters
in a GUI (or from command line) while the node is running. It can be
used to change the camera grabbing framerate for instance.

T. Moulard˜˜() ROS tutorial January 2012 9 / 32

ROS as a framework (2)

Now that we have nodes with input and output, how do we make them
communicate together?

If A publishes on foo and B listens on foo, B will receive topics data from
A.

The services and topics names are used to match clients and servers.

T. Moulard˜˜() ROS tutorial January 2012 10 / 32

ROS introspection tools
Let’s play around:

Setup the environment variables needed by ROS.
source /opt/ros/electric/setup.bash
Start the nameserver.
roscore
Start the turtlesim_node which is in the turtlesim pkg.
rosrun turtlesim turtlesim_node
List nodes
rosnode list
Teleoperating the turtle.
rosrun turtlesim turtle_teleop_key
Display the graph.
rxgraph
Display the velocity
rostopic echo /turtle1/command_velocity

T. Moulard˜˜() ROS tutorial January 2012 11 / 32

ROS introspection tools (2)

Show message type.
rosmsg show turtlesim/Velocity
Publish velocity instead of using the teleoperation node.
rostopic pub -1 /turtle1/command_velocity turtlesim/Velocity -- 2.0 1.8
rostopic pub /turtle1/command_velocity turtlesim/Velocity -r 1 -- 2.0 -1.8

See how often the robot pose is refreshed.
rostopic hz /turtle1/pose

Plot the pose.
rxplot /turtle1/pose/x,/turtle1/pose/y /turtle1/pose/theta

T. Moulard˜˜() ROS tutorial January 2012 12 / 32

ROS introspection tools (3)

List service.
rosservice list
Show service description.
rosservice type spawn | rossrv show
Create a new turtle by creating a service.
rosservice call spawn 2 2 0.2 ""
ROS parameter list.
rosparam list
Set and get background colors using rosparam
rosparam set background_r 150
rosparam get background_g
Display parameters
rosparam get /
Save parameters
rosparam dump params.yaml
Load parameters into new namespace copy
rosparam load params.yaml copy
rosparam get copy/background_b

T. Moulard˜˜() ROS tutorial January 2012 13 / 32

ROS introspection tools (4)

Display debug information
rxloggerlevel
rxconsole

T. Moulard˜˜() ROS tutorial January 2012 14 / 32

ROS launch files

A usual robotics behaviors is implemented by several nodes launched with
specific parameters.
To do so, the easiest way is to use roslaunch.
roslaunch starts a set of nodes using an XML description:

<launch>
<group ns="turtlesim1">

<node pkg="turtlesim" name="sim" type="turtlesim_node"/>
</group>
<group ns="turtlesim2">

<node pkg="turtlesim" name="sim" type="turtlesim_node"/>
</group>
<node pkg="turtlesim" name="mimic" type="mimic">

<remap from="input" to="turtlesim1/turtle1"/>
<remap from="output" to="turtlesim2/turtle1"/>

</node>
</launch>

T. Moulard˜˜() ROS tutorial January 2012 15 / 32

tf: the Transform Broadcaster

tf is the ROS transformation directory. A classic architecture problems is
the following: several independent modules computes transformation
between bodies and publishes them between at a different frame-rate.
Therefore, how to make sure that the computed transformations are valid?

roslaunch turtle_tf turtle_tf_demo.launch
rosrun tf view_frames
rosrun tf tf_echo turtle1 turtle2
rosrun rviz rviz -d \

‘rospack find turtle_tf‘/rviz/turtle_rviz.vcg

T. Moulard˜˜() ROS tutorial January 2012 16 / 32

tf: the Transform Broadcaster (2)

tf avoids having to concatenate transformations correctly. It also
motivates developers to set correctly the frame id so that everything
works “out of the box”, instead of relying on the documentation
which is often obsolete.
tf remembers the past up-to 10 seconds before (by default).
tf can interpolate data to compute a transformation at a particular
point of the past.

T. Moulard˜˜() ROS tutorial January 2012 17 / 32

URDF: ROS robot model format

URDF is the Unified Robot Description Format.
It is used by ROS to describe the robot kinematics chain, dynamic
and physical properties. It also stores an optional alternative
representation for collision checking and a visual representation.
These can be either built from basic geometrical shapes or through a
COLLADA model.

T. Moulard˜˜() ROS tutorial January 2012 18 / 32

URDF: ROS robot model format

<?xml version="1.0"?>
<robot name="multipleshapes">

<link name="base_link">
<visual>

<geometry>
<cylinder length="0.6" radius="0.2"/>

</geometry>
</visual>

</link>
<link name="right_leg">

<visual>
<geometry> <box size="0.6 .2 .1"/> </geometry>

</visual>
</link>
<joint name="base_to_right_leg" type="fixed">

<parent link="base_link"/>
<child link="right_leg"/>

</joint>
</robot>

T. Moulard˜˜() ROS tutorial January 2012 19 / 32

URDF: ROS robot model format

roscd urdf_tutorial
roslaunch urdf_tutorial display.launch \

model:=06-flexible.urdf gui:=True
rostopic echo /joint_states

rosrun tf view_frames

Behind the scenes:
Set the robot description parameter.
Start the robot state publisher (compute forward kinematics
using KDL).
Start an interactive joint state publisher.

T. Moulard˜˜() ROS tutorial January 2012 20 / 32

T. Moulard˜˜() ROS tutorial January 2012 21 / 32

Replaying data using rosbag

Topics can be recorded and replayed using rosbag and played step by
step. The ROS time API ensures that the time data will remain consistent.

Replay data.
roscore
rosbag play --clock ˜/2012-01-12-09-53-29.bag
Inspect bag file.
rxbag ˜/2012-01-12-09-53-29.bag

T. Moulard˜˜() ROS tutorial January 2012 22 / 32

ROS vision pipeline (1)

ROS provides an image processing pipeline:
Image grabbing (1394, USB, etc.),
Color conversion,
Rectification using calibration data,
Disparity images for stereo pairs,
Streaming of compressed images to reduce network load.

Easy to interface with OpenCV.
Easy to use, automatic calibration method.

T. Moulard˜˜() ROS tutorial January 2012 23 / 32

ROS vision pipeline (2)

rosrun image_view image_view \
image:=/wide/left/image_raw

ROS_NAMESPACE=/wide/left rosrun image_proc image_proc
rosrun image_view image_view \

image:=/wide/left/image_mono
rosrun image_view image_view \

image:=/wide/left/image_rect_color compressed

T. Moulard˜˜() ROS tutorial January 2012 24 / 32

Nodelets

A limitation when doing vision using robotics components: images
serialization/unserialization is extremely costly.
Nodelets allow different nodes to be loaded into the same namespace
to avoid copying data.
Typically: grabbing, color conversion, rectification and stereo
processing may be done in the same node. Unstable experimental
algorithms may be run into a separate process to avoid impacting the
whole architecture.

Next: Ecto http://ecto.willowgarage.com/ is a data-flow framework
dedicated to sensor/vision processing.

T. Moulard˜˜() ROS tutorial January 2012 25 / 32

http://ecto.willowgarage.com/

Other interesting packages

PCL the Point Cloud Library
Navigation stack ekf filter, robot self filter

SLAM: gmapping, vslam (visual SLAM with bundle adjustment),
PTAM. . .
Tracking: ar pose

Motion planning: OMPL
Simulation: Gazebo
Drivers: IMU, cameras, GPS, Kinect. . .
Finite state machine: ActionLib. . .

T. Moulard˜˜() ROS tutorial January 2012 26 / 32

LAAS packages

vision visp the ViSP model based tracker
motion analysis mocap our MoCap system
humanoid walk generating walking trajectories for humanoids robots.

The complete list is available here:
http://www.ros.org/wiki/laas-ros-pkg

Consider contributing a package, especially if you intend to be hired by a
private company after your PhD. . .

T. Moulard˜˜() ROS tutorial January 2012 27 / 32

http://www.ros.org/wiki/laas-ros-pkg

T. Moulard˜˜() ROS tutorial January 2012 28 / 32

Tutorial: controlling the turtle

The goal is sending a velocity to the turtle both in C++ and Python.

Initializing ROS and launching the required node

roscore
rosrun turtlesim turtlesim_node

T. Moulard˜˜() ROS tutorial January 2012 29 / 32

Tutorial: controlling the turtle (2)
Setting up your workspace

mkdir ˜/ros
cd ˜/ros
mkdir workspace
emacs setup.sh

setup.sh
#!/bin/sh
export ROS_ROOT=/opt/ros/electric/ros
export PATH=$ROS_ROOT/bin:$PATH
export PYTHONPATH=$ROS_ROOT/core/roslib/src:$PYTHONPATH
if [! "$ROS_MASTER_URI"]; then
export ROS_MASTER_URI=http://localhost:11311

fi
export ROS_PACKAGE_PATH=$HOME/ros/workspace:/opt/ros/electric/stacks
export ROS_WORKSPACE=$HOME/ros

T. Moulard˜˜() ROS tutorial January 2012 30 / 32

Tutorial: controlling the turtle (3)

Setting up your workspace (2)

source setup.sh
source ${ROS_ROOT}/tools/rosbash/rosbash

Creating your stack and your first package

mkdir -p ˜/ros/workspace
cd ˜/ros/workspace
roscreate-stack my_stack
roscreate-package my_turtle_controller
roscd my_turtle_controller

T. Moulard˜˜() ROS tutorial January 2012 31 / 32

Tutorial: controlling the turtle (4)

Edit the manifest.xml to add a dependency toward turtlesim.
Edit the CMakeLists.txt and add a statement to compile your node
(i.e. program). The node is only composed of src/controller.cpp

Edit the src/controller.cpp and write your subscriber. You must
subscribe to /turtle1/command velocity and send regularly
commands.
Then, do the same thing in Python!

T. Moulard˜˜() ROS tutorial January 2012 32 / 32

