
Universidad Veracruzana
Research Center on Artificial Intelligence

LAAS-CNRS
Robotics, Action and Perception (RAP) group

ROS Tutorial:
Robotics Operation System

Author:
Antonio Marin-Hernandez

October 31, 2014

ii

Contents

1 ROS Installation 1
1.1 Requirements . 1
1.2 Installation . 1
1.3 Environment Setup . 2

1.3.1 Creating a Workspace 2

2 Beginning with ROS 5
2.1 Basic Concepts in ROS . 5
2.2 ROS Tools . 6

2.2.1 rosversion . 6
2.2.2 roscd . 6
2.2.3 rospack . 6
2.2.4 rosmsg . 6
2.2.5 rostopic . 7

3 Simulation with Gazebo 9
3.1 Requirements . 9
3.2 Initializing Gazebo Simulation 9

4 Creating Packages in ROS with catkin 13
4.1 Requirements . 13
4.2 Creating a first package . 13
4.3 Compiling your Package . 15
4.4 Customizing your Package . 16
4.5 Reading and Writing Topics in your code 17
4.6 Exercises . 18

4.6.1 Circles . 18
4.6.2 Square . 18
4.6.3 Spiral . 18

5 Creating your Own Robot Model 19
5.1 URDF models . 19
5.2 Robot State Publisher . 19
5.3 Joint States . 19

iii

iv CONTENTS

6 References 21

Chapter 1

ROS Installation

1.1 Requirements

Depending on your OS, the installation of ROS require different packages
and dependencies, of example:

• Linux
ROS better works with Ubuntu 12.04 (precise).
GCC version 4.4 or higher, CMake, Python version 2.7 (strictly).

• Mac
Mac ports,

1.2 Installation

ROS is developed by Willow Garage Inc.TM with contributions all around
the world. There are more than 2,000 packages, going from diverse robotic
platforms, and passing from hardware drivers (sensors and actuators) to
many computer algorithms.

To begin with the installation, firs of all, setup your computer to accept
software from site packages.ros.org. ROS Hydro ONLY supports Precise,
Quantal, and Raring for Debian packages.

Ubuntu 12.04 (Precise) is preferred, so here are instructions to install on
this particular distribution:

We begin adding the ROS repository by the following instruction:
$ sudo sh -c ’echo "deb http://packages.ros.org/ros/ubuntu precise

main" > /etc/apt/sources.list.d/ros-latest.list’

next, we have to set up the keys by:
$ wget http://packages.ros.org/ros.key -O - | sudo apt-key add -

1

2 CHAPTER 1. ROS INSTALLATION

And now, make sure your Debian package index is up-to-date:
$ sudo apt-get update

Lets proceed to install ROS, the Desktop-Full Install is recommended,
it includes: ROS, rqt, rviz, robot-generic libraries, 2D/3D simulators, navi-
gation and 2D/3D perception.
$ sudo apt-get install ros-hydro-desktop-full

Before you can use ROS, you will need to initialize rosdep. rosdep

enables you to easily install system dependencies for source you want to
compile and is required to run some core components in ROS.
$ sudo rosdep init
$ rosdep update

If you have already a previous version of ROS, is better to delete rosdep
init file commonly in:
$ rm /etc/ros/rosdep/sources.list.d/20-default.list

Finally, get rosinstall, in ubuntu the instruction is:
sudo apt-get install python-rosinstall

1.3 Environment Setup

1.3.1 Creating a Workspace

First you need to choose a workspace directory, preferably an empty direc-
tory, so you can create a new one, called for example: ros-workspace at
your home’s path.

$ mkdir -p ~/my_workspace/src

from now, this workspace you have just been created, should be referred as
</path/to/your/wokspace>.
$ cd <path/to/your/workspace>

This path will be the root from where ROS will search to find your
projects.

In order to access initiate your workspace execute following lines in your
terminal,
source <path/to/ros/install>/setup.bash

Now, let’s create a workspace with catkin:

1.3. ENVIRONMENT SETUP 3

cd ~/<path/to/your/workspace>/src
catkin_init_workspace

Even though the workspace is empty (there are no packages in the ’src’
folder, just a single CMakeLists.txt link) you can still "build" the workspace:
cd ~/<path/to/your/ros-workspace>
catkin_make

What makes directories devel and build in your </path/to/your/ros-
workspace>

In order to access easily to your workspace put following lines into your
.bashrc or .login file, depending on your system:
source <path/to/ros/install>/setup.bash
source <path/to/your/ros-workspace>/devel/setup.bash

To test configuration go to your home directory
cd

and type
roscd

now, you should be at
pwd
<path/to/your/ros-workspace>/devel

4 CHAPTER 1. ROS INSTALLATION

Chapter 2

Beginning with ROS

In this section, we will discuss about Initial concepts and tools to query
system and/or communicate between modules (nodes) in ROS.

2.1 Basic Concepts in ROS

ROS is aka operating system for robots, which could be considered as a
client/server system. ROS system is composed from different packages that
include nodes, topics, services and parameters. Nodes, called also rosnodes,
are the executables programs.

Topics and services are ways of communication between nodes. They
depend from each node (see node definitions). Services rely on a query
made by a given node or from terminal, getting a response from the node
offering the service. In a different way, topics require a subscription to a
node that will be broadcasting some particular info.

Figure 2.1: ROS concepts.

5

6 CHAPTER 2. BEGINNING WITH ROS

2.2 ROS Tools

ROS provides some useful tools to get information about the topics and
services in run.

2.2.1 rosversion

The rosversion command tool, is used to recover current version in your
system, by running the following command, you should get:
$ rosversion -d
hydro

unless you are using another ROS distribution (i.e. groovy or fuerte)

2.2.2 roscd

roscd will locate you at your ROS workspace:
$ roscd
$ pwd
<path/to/your/ros-workspace>/devel

2.2.3 rospack

You can find the path where a package is installed by:
$ rospack find <package>
<the/path/to/package>

2.2.4 rosmsg

Depending on your installed packages different types of messages can be
provided. It’s possible to listed by the following command:
$ rosmsg list
geometry_msgs/Point
geometry_msgs/Point32
geometry_msgs/PointStamped
geometry_msgs/Polygon
...

Following commands and tools require communication with master so,
lets run the following command to enable master’s communication:
$ roscore

Command roscore enables master and basic requirements and services
for ROS package communication.

2.2. ROS TOOLS 7

2.2.5 rostopic

In another terminal write the following command:
$ rostopic list
/rosout
/rosout_agg

by the moment we left this command and we will return to it later.

8 CHAPTER 2. BEGINNING WITH ROS

Chapter 3

Simulation with Gazebo

ROS includes a physics based simulation engine called Gazebo, initially de-
veloped in conjunction with the Player/Stage project.

Gazebo in ROS is considered as a node, offering different topics and
services.

3.1 Requirements

To successful do this section it is required the following ROS packages:
gazebo_ros
turtlebot_bringup
turtlebot_description
turtlebot_gazebo

All these packages should be available with apt-get command or bias
Ubuntu "Software Center".

3.2 Initializing Gazebo Simulation

To launch Gazebo with an empty world write the following command from
a terminal,
$ roslaunch gazebo_worlds empty_world.launch

this will display a window with a plane.
In order to known all services offered by gazebo node we can type in

another terminal window:
$ rosservice list gazebo
from we get the following message
/gazebo/apply_body_wrench
/gazebo/apply_joint_effort
/gazebo/clear_body_wrenches
/gazebo/clear_joint_forces

9

10 CHAPTER 3. SIMULATION WITH GAZEBO

/gazebo/delete_model
/gazebo/get_joint_properties
/gazebo/get_link_properties
/gazebo/get_link_state
/gazebo/get_loggers
/gazebo/get_model_properties
/gazebo/get_model_state
/gazebo/get_physics_properties
/gazebo/get_world_properties
/gazebo/pause_physics
/gazebo/reset_simulation
/gazebo/reset_world
/gazebo/set_joint_properties
/gazebo/set_link_properties
/gazebo/set_link_state
/gazebo/set_logger_level
/gazebo/set_model_configuration
/gazebo/set_model_state
/gazebo/set_parameters
/gazebo/set_physics_properties
/gazebo/spawn_gazebo_model
/gazebo/spawn_urdf_model
/gazebo/unpause_physics

To put objects in the world there are many ways. All objects in the
world are considered as robots, while some of them are not autonomous ?

Change to gazebo_worlds path by:
$ roscd gazebo_worlds/

Now, list contents in directory
$ ls

you should get something similar to:
CMakeLists.txt
launch
objects
test
Makefile
added_threading_stuff_test.patch
manifest.xml
scripts
worlds
Media
bin
meshes
src

To include an object into the scene run the following command:
$ rosrun gazebo spawn_model -file objects/desk1.model -gazebo -

model desk1 -x 0

3.2. INITIALIZING GAZEBO SIMULATION 11

you should see green desk in the gazebo window.
spawn_model is a service offered by node gazebo, there are many ways to

access services, in this case is by a rosrun a gazebo node with spawn_model
service. spawn_model has different parameters, to known it type:
$ rosrun gazebo spawn_model

you should get something like:
Commands:

-[urdf|gazebo|trimesh] - specify incoming xml is urdf or
gazebo format

-[file|param] [<file_name>|<param_name>] - source of the model
xml or the trimesh file

-model <model_name> - name of the model to be spawned.
-reference_frame <entity_name> - optinal: name of the model/

body where initial pose is defined.
If left empty or specified as

"world", gazebo world
frame is used.

-namespace <ros_namespace> - optional: all subsequent ROS
interface plugins will be inside of this namespace.

-unpause - optional: !!!Experimental!!! unpause physics after
spawning model

-wait - optional: !!!Experimental!!! wait for model to exist
-trimesh_mass <mass in kg> - required if -trimesh is used:

linear mass
-trimesh_ixx <moment of inertia in kg*m^2> - required if -

trimesh is used: moment of inertia about x-axis
-trimesh_iyy <moment of inertia in kg*m^2> - required if -

trimesh is used: moment of inertia about y-axis
-trimesh_izz <moment of inertia in kg*m^2> - required if -

trimesh is used: moment of inertia about z-axis
-trimesh_gravity <bool> - required if -trimesh is used:

gravity turned on for this trimesh model
-trimesh_material <material name as a string> - required if -

trimesh is used: E.g. Gazebo/Blue
-trimesh_name <link name as a string> - required if -trimesh

is used: name of the link containing the trimesh
-x <x in meters> - optional: initial pose, use 0 if left out
-y <y in meters> - optional: initial pose, use 0 if left out
-z <z in meters> - optional: initial pose, use 0 if left out
-R <roll in radians> - optional: initial pose, use 0 if left

out
-P <pitch in radians> - optional: initial pose, use 0 if left

out
-Y <yaw in radians> - optional: initial pose, use 0 if left

out
-J <joint_name joint_position> - optional: initialize the

specified joint at the specified value

lets put another object in the world by typing :
$ rosrun gazebo spawn_model -file objects/000.580.67.model -gazebo

-model cup -z 2

12 CHAPTER 3. SIMULATION WITH GAZEBO

Chapter 4

Creating Packages in ROS
with catkin

4.1 Requirements
For a package to be considered a catkin package it must meet a few require-
ments:

The package must contain a catkin compliant package.xml file. That
package.xml file provides meta information about the package. The pack-
age must contain a CMakeLists.txt which uses catkin. Catkin metapack-
ages must have a boilerplate CMakeLists.txt file.

There can be no more than one package in each folder. This means
no nested packages nor multiple packages sharing the same directory. The
simplest possible package might look like this:
my_package/

CMakeLists.txt
package.xml

4.2 Creating a first package
To create a package you need to be at </path/to/your/workspace>/src
directory. If it’s your first package, your src directory should contain only
a CMakeLists.txt file. If is not your first package it should contain a di-
rectory for each previous package. And finally if it is empty you should
initialize your workspace as has been described in chapter 2.

Lets create our first package by writing the following command:
$ catkin_create_pkg my_first_rospkg std_msgs rospy roscpp
Created file my_first_rospkg/package.xml
Created file my_first_rospkg/CMakeLists.txt
Created folder my_first_rospkg/include/my_first_rospkg

13

14 CHAPTER 4. CREATING PACKAGES IN ROS WITH CATKIN

Created folder my_first_rospkg/src
Successfully created files in </path/to/your/workspace>/src/

my_first_rospkg. Please adjust the values in package.xml.

Now you have inside your src directory a new one called my_first_rospkg.
And inside latter, you should have some files and directories just created.

We have just created the new package called my_first_rospkg which
depends on : std_msgs rospy & roscpp .

The catkin_create_pkg instruction has the following format:

catkin_create_pkg <package_name> [depend1] [depend2] [depend3]

Using command rospack we can recover dependencies of a given pack-
age, for example:

$ rospack depends1 my_first_rospkg
roscpp
rospy
std_msgs

The previous list returned by rospack command, are the primarily de-
pendencies. However as each dependencies have also their dependencies, our
package has indirect dependencies. They can be recovered by:

$ rospack depends my_first_rospkg
catkin
console_bridge
cpp_common
rostime
roscpp_traits
roscpp_serialization
genmsg
genpy
message_runtime
gencpp
genlisp
message_generation
rosbuild
rosconsole
std_msgs
rosgraph_msgs
xmlrpcpp
roscpp
rosgraph
rospack
roslib
rospy

We can individually recover the indirect dependencies by using same
command on each of the primarily dependencies.

4.3. COMPILING YOUR PACKAGE 15

4.3 Compiling your Package
At this stage you can compile your new package and running it. However it
doesn’t contains nothing in their code, so it should do anything. To compile
your package you need to be at your </path/to/your/workspace> and
not in the src directory. Then you should run the command:
$ catkin_make
Base path: </path/to/your/workspace>
Source space: </path/to/your/workspace>/src
Build space: </path/to/your/workspace>/build
Devel space: </path/to/your/workspace>/devel
Install space: </path/to/your/workspace>/install
####
Running command: "cmake </path/to/your/workspace>/src -

DCATKIN_DEVEL_PREFIX=</path/to/your/workspace>/devel -
DCMAKE_INSTALL_PREFIX=</path/to/your/workspace>/install" in
"</path/to/your/workspace>/build"

####
-- Using CATKIN_DEVEL_PREFIX: </path/to/your/workspace>/devel
-- Using CMAKE_PREFIX_PATH: </path/to/your/workspace>/devel;/opt/

ros/hydro
-- This workspace overlays: </path/to/your/workspace>/devel;/opt/

ros/hydro
-- Using PYTHON_EXECUTABLE: /usr/bin/X11/python
-- Using Debian Python package layout
-- Using CATKIN_ENABLE_TESTING: ON
-- Call enable_testing()
-- Using CATKIN_TEST_RESULTS_DIR: </path/to/your/workspace>/build/

test_results
-- Found gtest sources under ’/usr/src/gtest’: gtests will be

built
-- catkin 0.5.81
-- BUILD_SHARED_LIBS is on
-- ~~~
-- ~~ traversing 1 packages in topological order:
-- ~~ - my_first_rospkg
-- ~~~
-- +++ processing catkin package: ’my_first_rospkg’
-- ==> add_subdirectory(my_first_rospkg)
-- Configuring done
-- Generating done
-- Build files have been written to: </path/to/your/workspace>/

build
####
Running command: "make -j4 -l4" in "</path/to/your/workspace

>/build"
####

In opposite way as cmake command works, catkin compiles everything
inside the workspace a not only one package. NOTE: You should always run
catkin_make command from your root workspace, i.e. <path/to/your/ros-
workspace>.

16 CHAPTER 4. CREATING PACKAGES IN ROS WITH CATKIN

4.4 Customizing your Package
Lets begin gazebo simulator with the turtlebot robot by tapping on your
teminal:
$ roslaunch turtlebot_gazebo turtlebot_empty_world.launch

Turtlebot uses the following topic /mobile_base/commands/velocity
to get speed commands. This topic is of the type geometry_msgs/Twist,
as can be see using the rostopic info command. In order to communicate
with our package with the robot, it’s necessary to create a code able to write
on this topic.

Lets add this code to our package. Open your favorite code editor, e.g.
emacs or gedit, and create a file called my_first_code.cpp in the src

directory of my_first_rospkg and then copy following lines inside it:
#include "ros/ros.h"
#include "geometry_msgs/Twist.h"

int main(int argc, char **argv)
{
ros::init(argc, argv, "my_fisrt_node");
ros::NodeHandle n;
ros::Publisher speed_pub = n.advertise<geometry_msgs::Twist>("/

mobile_base/commands/velocity", 1000);
ros::Rate loop_rate(10);

int count = 0;

while (ros::ok()) {
geometry_msgs::Twist speedMsg;
speedMsg.linear.x=0.0;
speedMsg.linear.y=0.0;
speedMsg.linear.z=0.0;
speedMsg.angular.x=0.0;
speedMsg.angular.y=0.0;
speedMsg.angular.z=0.5;

speed_pub.publish(speedMsg);

ros::spinOnce();
loop_rate.sleep();
++count;

}

return 0;
}

Now, lets modify CMakeLists.txt file on the home of your package, by
uncomment and modifying or writing the following lines:
Declare a cpp executable
add_executable(my_first_rospkg_node src/my_first_code.cpp)

4.5. READING AND WRITING TOPICS IN YOUR CODE 17

and
Specify libraries to link a library or executable target

against
target_link_libraries(my_first_rospkg_node
${catkin_LIBRARIES}

)

Now lets compile the node by running catkin_make command on the
top of your ros workspace. At this stage you are able to make move your
simulated robot on gazebo by running the command:
$ rosrun my_first_package my_first_rospkg_node

4.5 Reading and Writing Topics in your code

#include "ros/ros.h"
#include "geometry_msgs/Twist.h"
#include "nav_msgs/Odometry.h"

ros::Publisher speed_pub;
geometry_msgs::Twist speedMsg;

void poseCallback(const nav_msgs::Odometry::ConstPtr& odomMsg)
{

ROS_INFO("Turtlebot -> Reading Odometry Message %f,%f\n",
odomMsg->pose.pose.position.x,
odomMsg->pose.pose.position.y);

speedMsg.linear.x=0.5;
speedMsg.linear.y=0.0;
speedMsg.linear.z=0.0;
speedMsg.angular.x=0.0;
speedMsg.angular.y=0.0;
speedMsg.angular.z=0.0;

if ((fabs(odomMsg->pose.pose.position.x)>2.00) ||
(fabs(odomMsg->pose.pose.position.y)>2.00)){

speedMsg.linear.x=-0.5;
}
speed_pub.publish(speedMsg);

}

int main(int argc, char **argv)
{

ros::init(argc, argv, "publisher");
ros::NodeHandle n;
ros::Subscriber sub = n.subscribe("/odom", 1000,poseCallback);

18 CHAPTER 4. CREATING PACKAGES IN ROS WITH CATKIN

speed_pub = n.advertise<geometry_msgs::Twist>("/mobile_base/
commands/velocity", 1000);

printf("P3DX Reader initialized\n");
ros::spin();
return 0;

}

4.6 Exercises

4.6.1 Circles

Make your simulated robot to move describing a circle of radius r = 1.0m

4.6.2 Square

Following a square of 1m by side

4.6.3 Spiral

Chapter 5

Creating your Own Robot
Model

5.1 URDF models

5.2 Robot State Publisher

5.3 Joint States

19

20 CHAPTER 5. CREATING YOUR OWN ROBOT MODEL

Chapter 6

References

21

	ROS Installation
	Requirements
	Installation
	Environment Setup
	Creating a Workspace

	Beginning with ROS
	Basic Concepts in ROS
	ROS Tools
	rosversion
	roscd
	rospack
	rosmsg
	rostopic

	Simulation with Gazebo
	Requirements
	Initializing Gazebo Simulation

	Creating Packages in ROS with catkin
	Requirements
	Creating a first package
	Compiling your Package
	Customizing your Package
	Reading and Writing Topics in your code
	Exercises
	Circles
	Square
	Spiral

	Creating your Own Robot Model
	URDF models
	Robot State Publisher
	Joint States

	References

