

Learning ROS for
Robotics Programming

Aaron Martinez

Enrique Fernández

Chapter No. 3

"Debugging and Visualization"

In this package, you will find:
A Biography of the authors of the book

A preview chapter from the book, Chapter NO.3 "Debugging and Visualization"

A synopsis of the book’s content

Information on where to buy this book

About the Authors
Aaron Martinez is a computer engineer, entrepreneur, and expert in digital fabrication.

He did his Master's thesis in 2010 at the IUCTC (Instituto Universitario de Ciencias y

Tecnologias Ciberneticas) in the University of Las Palmas de Gran Canaria. He prepared

his Master's thesis in the field of telepresence using immersive devices and robotic

platforms. After completing his academic career, he attended an internship program at

The Institute for Robotics in the Johannes Kepler University in Linz, Austria. During his

internship program, he worked as part of a development team of a mobile platform using

ROS and the navigation stack. After that, he was involved in some projects related to

robotics, one of them is the AVORA project in the University of Las Palmas de Gran

Canaria. In this project, he worked on the creation of an AUV (Autonomous Underwater

Vehicle) to participate in the Student Autonomous Underwater Challenge-Europe

(SAUC-E) in Italy. In 2012, he was responsible for manufacturing this project; in 2013,

he helped to adapt the navigation stack and other algorithms from ROS to the robotic

platform.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Recently, Aaron created his own company called Biomecan. This company works with

projects related to robotics, manufacturing of prototypes, and engineering tissue. The

company manufactures devices for other companies and research and development

institutes. For the past two years, he has been working on engineering tissue projects,

creating a new device to help researchers of cell culture.

Aaron has experience in many fields such as programming, robotics, mechatronics, and

digital fabrication, many devices such as Arduino, BeagleBone, Servers, and LIDAR,

servomotors, and robotic platforms such as Wifi bot, Nao Aldebaran, and Pioneer P3AT.

I would like to thank my girlfriend who has supported me while

writing this book and gave me motivation to continue growing

professionally. I also want to thank Donato Monopoli, Head of

Biomedical Engineering Department at ITC (Canary-Islands

Institute of Technology), and all the staff there.

Thanks for teaching me all I know about digital fabrication,

machinery, and engineering tissue. I spent the best years of my life

in your workshop. Thanks to my colleagues in the university,

especially Alexis Quesada, who gave me the opportunity to create

my first robot in my Master's thesis. I have learned a lot about

robotics working with them.

Finally, thanks to my family and friends for their help and support.

Enrique Fernández is a computer engineer and roboticist. He did his Master's Thesis in

2009 at the University Institute of Intelligent Systems and Computational Engineering in

the University of Las Palmas de Gran Canaria. There he has been working on his Ph.D

for the last four years; he is expected to become a Doctor in Computer Science by

September 2013. His Ph.D addresses the problem of Path Planning for Autonomous

Underwater Gliders, but he has also worked on other robotic projects. He participated in

the Student Autonomous Underwater Challenge-Europe (SAUC-E) in 2012, and

collaborated for the 2013 edition. In 2012, he was awarded a prize for the development

of an underwater pan-tilt vision system.

Now, Enrique is working for Pal-Robotics as a SLAM engineer. He completed his

internship in 2012 at the Center of Underwater Robotics Research in the University of

Girona, where he developed SLAM and INS modules for the Autonomous Underwater

Vehicles of the research group using ROS. He joined Pal-Robotics in June 2013, where

he is working with REEM robots using the ROS software intensively and developing new

navigation algorithms for wheeled and biped humanoid robots, such as the REEM-H3

and REEM-C.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

During his Ph.D, Enrique has published several conference papers and publications. Two

of these were sent to the International Conference of Robotics and Automation (ICRA) in

2011. He is the co-author of some chapters of this book, and his Master's Thesis was

about the FastSLAM algorithm for indoor robots using a SICK laser scanner and the

odometry of a Pioneer differential platform. He also has experience with electronics and

embedded systems, such as PC104 and Arduino. His background covers SLAM,

Computer Vision, Path Planning, Optimization, and Robotics and Artificial Intelligence

in general.

I would like to thank my colleagues in the AVORA team, which

participated in the SAUC-E competition, for their strong collaboration

and all the things we learned. I also want to thank the members of my

research group at the University Institute of Intelligent Systems and

Computational Engineering and the people of the Center of Underwater

Robotics Research in Girona. During that time, I expended some of the

most productive days of my life; I have learned a lot about robotics and

had the chance to learn player/stage/Gazebo and start with ROS. Also,

thanks to my colleagues in Pal-Robotics, who have received me with

open arms, and have given me the opportunity to learn even more about

ROS and (humanoid) robots. Finally, thanks to my family and friends

for their help and support.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Learning ROS for
Robotics Programming
Learning ROS for Robotics Programming gives you a comprehensive review of ROS

tools. ROS is the Robot Operating System framework, which is used nowadays by

hundreds of research groups and companies in the robotics industry. But it is also the

painless entry point to robotics for nonprofessional people. You will see how to install

ROS, start playing with its basic tools, and you will end up working with state-of-the-art

computer vision and navigation tools.

The content of the book can be followed without any special devices, and each chapter

comes with a series of source code examples and tutorials that you can run on your own

computer. This is the only thing you need to follow in the book.

However, we also show you how to work with hardware, so that you can connect your

algorithms with the real world. Special care has been taken in choosing devices which are

affordable for amateur users, but at the same time the most typical sensors or actuators in

robotics research are covered.

Finally, the potential of ROS is illustrated with the ability to work with whole robots

in a simulated environment. You will learn how to create your own robot and integrate

it with the powerful navigation stack. Moreover, you will be able to run everything in

simulation, using the Gazebo simulator. We will end the book by providing a list of real

robots available for simulation in ROS. At the end of the book, you will see that you can

work directly with them and understand what is going on under the hood.

What This Book Covers
Chapter 1, Getting Started with ROS, shows the easiest way you must follow in order to

have a working installation of ROS. You will see how to install different distributions of

ROS, and you will use ROS Fuerte in the rest of the book. How to make an installation

from Debian packages or compiling the sources, as well as making installations in virtual

machines, have been described in this chapter.

Chapter 2, The ROS Architecture with Examples, is concerned with the concepts and

tools provided by the ROS framework. We will introduce you to nodes, topics, and

services, and you will also learn how to use them. Through a series of examples, we will

illustrate how to debug a node or visualize the messages published through a topic.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3, Debugging and Visualization, goes a step further in order to show you

powerful tools for debugging your nodes and visualize the information that goes through

the node's graph along with the topics. ROS provides a logging API which allows you to

diagnose node problems easily. In fact, we will see some powerful graphical tools such as

rxconsole and rxgraph, as well as visualization interfaces such as rxplot and rviz. Finally,

this chapter explains how to record and playback messages using rosbag and rxbag.

Chapter 4, Using Sensors and Actuators with ROS, literally connects ROS with the real

world. This chapter goes through a number of common sensors and actuators that are

supported in ROS, such as range lasers, servo motors, cameras, RGB-D sensors, and

much more. Moreover, we explain how to use embedded systems with microcontrollers,

similar to the widely known Arduino boards.

Chapter 5, 3D Modeling and Simulation, constitutes one of the first steps in order to

implement our own robot in ROS. It shows you how to model a robot from scratch and

run it in simulation using the Gazebo simulator. This will later allow you to use the whole

navigation stack provided by ROS and other tools.

Chapter 6, Computer Vision, shows the support for cameras and computer vision tasks in

ROS. This chapter starts with drivers available for FireWire and USB cameras, so that

you can connect them to your computer and capture images. You will then be able to

calibrate your camera using ROS calibration tools. Later, you will be able to use the

image pipeline, which is explained in detail. Then, you will see how to use several APIs

for vision and integrate OpenCV. Finally, the installation and usage of a visual odometry

software is described.

Chapter 7, Navigation Stack – Robot Setups, is the first of two chapters concerned with

the ROS navigation stack. This chapter describes how to configure your robot so that it

can be used with the navigation stack. In the same way, the stack is explained, along with

several examples.

Chapter 8, Navigation Stack – Beyond Setups, continues the discussion of the previous

chapter by showing how we can effectively make our robot navigate autonomously. It

will use the navigation stack intensively for that. This chapter shows the great potential of

ROS using the Gazebo simulator and rviz to create a virtual environment in which we can

build a map, localize our robot, and do path planning with obstacle avoidance.

Chapter 9, Combining Everything – Learn by Doing, builds from the previous chapters

and shows a number of robots which are supported in ROS using the Gazebo simulator.

In this chapter you will see how to run these robots in simulation and perform several of

the tasks learned in the rest of the book, especially those related to the navigation stack.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization
The ROS framework comes with a great number of powerful tools to help the user
and developer in the process of debugging the code, and detecting problems with
both the hardware and software. This comprises debugging facilities such as log
messages as well as visualization and inspection capabilities, which allows the user
to see what is going on in the system easily.

Here, we also cover the workfl ow to debug ROS nodes using GDB debugger as an
example. Although this is almost the same as debugging a regular C/C++ program,
there are a few aspects that must be taken into account. We will only focus on these
particular aspects, since explaining the way to use the debugger is far from the scope of
this chapter. You are encouraged to read the GDB reference and user manual for this.

ROS provides an API for logging, which allows setting different logging levels,
depending on the semantics of the message to output or print. This is not only
with the aim of helping debugging but also to have more informative and robust
programs in case of failure. As we will see later, we can inform the user about the
stages in the process of an algorithm with high-level informative messages, while
also warning the user about missed values or parameters as well as regular or fatal
errors, which are unrecoverable.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[64]

However, once our program compiles and runs, it might still fail. At this point,
two major things could be happening; fi rst, a problem related to the nodes, topics,
services, or any other ROS element, or second, an issue caused by our algorithm
itself. ROS provides a set of powerful tools to inspect the state of the system, which
include the node's graph, with all the connections (publishers and subscribers)
among topics as shown in the following screenshot. Both local and remote nodes
are seamlessly addressed, so the user can easily and rapidly detect a problem in
a node that is not running or a missed topic connection.

Up to some extent, a bunch of generic plotting tools are provided to analyze the
output or results of our own algorithms so that it becomes easier to detect bugs.
First of all, we have time series plots for scalar values, which might be fi elds of the
messages transferred between nodes. Then, there are tools to show images, even
with support for stereo pairs. Last but not least, we have 3D visualization tools
such as rviz, as shown in the following screenshot, for the PR2 robot. They allow
rendering point clouds, laser scans, and so on. As an important characteristic, all
data belongs to a topic that is placed on a frame so that the data is rendered in that
frame. A robot is generally a compound of many frames with transform frames
among them. To help the user to see the relationships among them, we also have
tools to watch the frame hierarchy at a glance.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3

[65]

In the upcoming sections, we will cover the following aspects:

• Debugging and good practices for developing code when creating ROS nodes.
• Adding logging messages to our code and setting different levels, from debug

messages to errors, or even fatal ones.
• Giving names, applying conditions, and throttling the logging messages,

which becomes very useful in large projects.
• Presenting a graphical tool to manage all the messages.
• Inspecting the state of the ROS system by listing the nodes running and

the topics and services available.
• Visualizing the node's graph representation, which are connected by

publishing and subscribing to topics.
• Plotting scalar data of certain messages.
• Visualizing scalar data for complex types. In particular, we will cover images

and the case of FireWire cameras, which are seamlessly supported in ROS,
as well as the 3D visualization of many topic types.

• Explaining what frames are and their close relationship with the messages
published by the topics. Similarly, we will see what a frame transformation
in the TF tree is.

• Saving the messages sent by topics and how to replay them for simulation
or evaluation purposes.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[66]

Debugging ROS nodes
In order to detect problems in the algorithms implemented inside ROS nodes,
we can face the problem at different levels to make the debugging of the software
easier. First, we must provide some readable information about the progress of the
algorithm, driver, or another piece of software. In ROS, we have a set of logging
macros for this particular purpose, which are completely integrated with the whole
system. Second, we need tools to determine which verbosity level is desired for a
given node; this is related to the ability to confi gure different logging levels. In the
case of ROS, we will see how it is possible to set debugging/logging levels even on
the fl y as well as conditions and names for particular messages. Third, we must be
able to use a debugger to step over the source code. We will see that the widely known
GDB debugger integrates seamlessly with ROS nodes. Finally, at the abstraction (or
semantic) level of ROS nodes and topics, it is useful to inspect the current state of the
whole system. Such introspection capabilities in ROS are supported by means of tools
that draw the nodes graph with connections among topics. The user or developer can
easily detect a broken connection at a glance, as we will explain later in another section.

Using the GDB debugger with ROS nodes
We will start with the standard way of debugging C/C++ executables of any kind.
The fl exibility of ROS allows using the well-known GDB debugger with a regular
C/C++ program. All we have to know is the location of our executable, which in the
case of ROS would be a node implemented in C++. Therefore, we only have to move
to the path that contains the node binary and run it within GDB. Indeed, we could
also run our node directly without the typical rosrun <package> <node> syntax.

To make it simple, we will show you how to run a node in GDB for the example1
node in the chapter3_tutorials package. First, move to the package with roscd
as follows:

roscd chapter3_tutorials

Then, we only have to recall that C++ binaries are created inside the bin folder
of the package folder's structure. Hence, we simply run it inside GDB using the
following command:

gdb bin/example1

Remember that you must have a roscore command
running before you start your node because it will need
the master/server running.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3

[67]

Once roscore is running, you can start your node in GDB by pressing the R key
and Enter. You can also list the associated source code with the L key as well as set
breakpoints or any of the functionalities that GDB comes with. If everything works
correctly, you should see the following output in the GDB terminal after you have
run the node inside the debugger:

(gdb) r

Starting program: /home/enrique/dev/rosbook/chapter3_tutorials/bin/
example1

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_
db.so.1".

[New Thread 0x7ffff2664700 (LWP 3204)]

...

...

[Thread 0x7ffff1e63700 (LWP 3205) exited]

[Inferior 1 (process 3200) exited normally]

Attaching a node to GDB while launching ROS
If we have a launch fi le to start our node, we have some attribute in the XML syntax
that allows us to attach the node to a GDB session. For the previous node, example1,
in the package chapter3_tutorials, we will add the following node element to the
launch fi le:

<launch>
<node pkg="chapter3_tutorials" type="example1"
 name="example1"/>
</launch>

Note that the package is passed to the pkg attribute and the node to the type
attribute. We also have to give this instance of the node a name since we can run
more than one instance of the same node. In this case, we gave the same name as the
node type, that is, the name attribute, which has the value example1. It is also a good
practice to set the attribute output to screen, so the debugging messages, which
we will see in the following code snippet, appear on the same terminal where we
launched the node:

<node pkg="chapter3_tutorials" type="example1"
 name="example1" output="screen"/>

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[68]

To attach it to GDB, we must add launch-prefix="xterm -e gdb --args":

<launch>
<node pkg="chapter3_tutorials" type="example1"
 name="example1" output="screen"
 launch-prefix="xterm -e gdb --args"/>
</launch>

What this prefi x does is very simple. It starts GDB, loads our node, and waits until
the user presses the C or R key; that is, the node is loaded but waiting to run. This
way the user can set breakpoints before the node runs and interact as a regular GDB
session. Also, note that a new window opens up. This is because we create the GDB
session in xterm, so we have a debugging window separated from the program
output window.

Additionally, we can use the same attribute to attach the node to other diagnostic
tools; for example, we can run valgrind on our program to detect memory leaks
and perform some profi ling analysis. For further information on valgrind, you can
check out http://valgrind.org. To attach our node to it, we proceed in a similar
way as we did with GDB. In this case, we do not need an additional window, so
that we do not start xterm, and simply set valgrind as the launch prefi x:

<launch>
<node pkg="chapter3_tutorials" type="example1"
 name="example1" output="screen"
 launch-prefix="valgrind"/>
</launch>

Enabling core dumps for ROS nodes
Although ROS nodes are actually regular executables, there are some tricky points
to note to enable core dumps that can be used later in a GDB session. First of all,
we have to set an unlimited core size. Note that this is required for any executable,
not just ROS nodes:

ulimit -c unlimited

Then, to allow core dumps to be created, we must set the core fi lename to use the
process pid by default; otherwise, they will not be created because at $ROS_HOME,
there is already a core directory to prevent core dumps. Therefore, in order to
create core dumps with the name and path $ROS_HOME/core.PID, we must do
the following:

echo 1 > /proc/sys/kernel/core_uses_pid

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3

[69]

Debugging messages
It is good practice to include messages that indicate what the program is doing.
However, we must do it without compromising the effi ciency of our software and
the clearance of its output. In ROS, we have an API that covers both features and is
built on top of log4cxx (a port of the well-known log4j logger library). In brief, we
have several levels of messages, which might have a name depending on a condition
or even throttle, with a null footprint on the performance and full integration with
other tools in the ROS framework. Also, they are integrated seamlessly with the
concurrent execution of nodes, that is, the messages do not get split, but they can
be interleaved according to their timestamps. In the following sections, we will
explain the details and how to use them adequately.

Outputting a debug message
ROS comes with a great number of functions or macros that allow us to output a
debugging message as well as errors, warnings, or simply informative messages.
It offers a great functionality by means of message (or logging) levels, conditional
messages, interfaces for STL streams, and much more. To put things in a simple and
straightforward fashion, in order to print an informative message (or information),
we can do the following at any point in the code:

ROS_INFO("My INFO message.");

Note that we do not have to include any particular library in our source code as
long as the main ROS header is included. However, we can add the ros/console.h
header as shown in the following code snippet:

#include <ros/ros.h>
#include <ros/console.h>

As a result of running a program with the preceding message, we will have the
following output:

[INFO] [1356440230.837067170]: My INFO message.

All messages are printed with its level and the current timestamp (your output
might differ for this reason) before the actual message and both these values are
between square brackets. The timestamp is the epoch time, that is, the seconds
and nanoseconds since 1970 followed by our message.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[70]

This function allows parameters in the same way as the printf function in C.
This means that we can pass values using all special characters that we can use
with printf; for example, we can print the value of a fl oating point number in
the variable val with this code:

const double val = 3.14;
ROS_INFO("My INFO message with argument: %f", val);

Also, C++ STL streams are supported with *_STREAM functions. Therefore, the
previous instruction is equivalent to the following using streams:

 ROS_INFO_STREAM(
 "My INFO stream message with argument: " << val
);

Please note that we did not specify any stream because it is implicit that we refer to
cout or cerr, depending on the message level, as we will see in the next section.

Setting the debug message level
ROS comes with fi ve classic logging levels, which are in the order of relevance.
They are DEBUG, INFO, WARN, ERROR, and FATAL.

These names are part of the function or macro used to output messages that follows
this syntax:

ROS_<LEVEL>[_<OTHER>]

Both DEBUG and INFO messages go to cout (or stdout). Meanwhile, WARN, ERROR,
and FATAL go to cerr (or stderr). Also, each message is printed with a particular
color as long as the terminal has this capability. The colors are DEBUG in green,
INFO in white, WARN in yellow, ERROR in red, and FATAL in purple.

The names of these messages clearly say the typology of the message given.
The user must use them accordingly. As we will see in the following sections,
this allows us to output only messages starting at a user-defi ned minimum level
so that debugging messages can be omitted when our code is stable. Additionally,
we have OTHER variants that are explained in the sequel.

Downloading the example code
You can download the example code fi les for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the fi les e-mailed directly to you.
You can also download these code fi les from https://github.com/
AaronMR/Learning_ROS_for_Robotics_Programming.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3

[71]

Confi guring the debugging level of a
particular node
By default, only messages of INFO or a higher level are shown. ROS uses the levels to
fi lter the messages printed by a particular node. There are many ways to do so. Some
of them are set at the compile time, while others can be changed before execution
using a confi guration fi le. It is also possible to change this level dynamically, as we
will see later in the following sections, using rosconsole and rxconsole.

First, we will see how to set the debugging level at compile time in our source code.
Just go to the main function, and after the ros::init call, insert the following code:

 // Set the logging level manually to DEBUG
 ROSCONSOLE_AUTOINIT;
 log4cxx::LoggerPtr my_logger =
 log4cxx::Logger::getLogger(ROSCONSOLE_DEFAULT_NAME);
 my_logger->setLevel(
 ros::console::g_level_lookup[ros::console::levels::Debug]
);

You do not need to include any particular header, but in the CMakeLists.txt fi le,
we must link the header to the log4cxx library. To do so, we must put:

find_library(LOG4CXX_LIBRARY log4cxx)

And our node must link to it:

rosbuild_add_executable(example1 src/example1.cpp)

target_link_libraries(example1 ${LOG4CXX_LIBRARY})

Now, DEBUG (and higher) messages are shown when our node runs since we
set ros::console::levels::Debug in the preceding example. You can run the
example1 node to check it and even change the level.

An alternative to the preceding method consists of using the compile-time-logger-
removal macros. Note that this will remove all the messages below a given level
at compilation time, so later we will not have them; this is typically useful for the
release build of our programs. To do so, we must set ROSCONSOLE_MIN_SEVERITY
to the minimum severity level or even none, in order to avoid any message (even
FATAL); this macro can be set in the source code or even in the CMakeLists.txt
fi le. The macros are ROSCONSOLE_SEVERITY_DEBUG, ROSCONSOLE_SEVERITY_INFO,
ROSCONSOLE_SEVERITY_WARN, ROSCONSOLE_SEVERITY_ERROR, ROSCONSOLE_
SEVERITY_FATAL, and ROSCONSOLE_SEVERITY_NONE.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[72]

The ROSCONSOLE_MIN_SEVERITY macro is defi ned in ros/console.h as DEBUG if not
given. Therefore, we can pass it as a built argument (with -D) or put it before all the
headers; for example, to show only ERROR (or higher) messages we will execute the
following code as we did in the example2 node:

#define ROSCONSOLE_MIN_SEVERITY ROSCONSOLE_SEVERITY_DEBUG

On the other hand, we have a more fl exible solution of setting the minimum
debugging level in a confi guration fi le. We will create a folder, just for convenience,
named config with the fi le chapter3_tutorials.config and this content:

log4j.logger.ros.chapter3_tutorials=DEBUG

We can put any of the levels supported in ROS. Then, we must set the ROSCONSOLE_
CONFIG_FILE environment variable to point our fi le. However, there is a better
option. It consists of using a launch fi le that does this and also runs our node
directly. Therefore, we can extend the launch fi les shown before to do so with
an env element as shown in the following code snippet:

<launch>
 <!-- Logger config -->
 <env name="ROSCONSOLE_CONFIG_FILE"
 value="$(find chapter3_tutorials)/config/chapter3_tutorials.
config"/>

 <!-- Example 1 -->
 <node pkg="chapter3_tutorials" type="example1" name="example1"
 output="screen"/>
</launch>

The environment variable takes the config fi le, described previously, that contains
the logging level specifi cation for each named logger. Then, in the launch fi le, our
node is simply run.

Giving names to messages
Since we can put messages in many places inside the same node, ROS allows us
to give a name to each node in our program. This way, later on, it will be easier to
detect from which part of the code is such a message coming. To do so, we use the
ROS_<LEVEL>[_STREAM]_NAMED function as shown in the following code snippet
(taken from the example2 node):

 ROS_INFO_STREAM_NAMED(
 "named_msg",
 "My named INFO stream message; val = " << val
);

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3

[73]

With named messages, we can go back to the config fi le and set different debugging
levels for each named message. This allows for fi ne tuning using the name of the
messages as the children of the node in the specifi cation; for example, we can set the
named_msg messages that are shown only for the ERROR (or higher) level with (note
that although ROS uses log4cxx, the confi guration fi les use the log4j root name) the
following command line:

log4j.logger.ros.chapter3_tutorials.named_msg=ERROR

Conditional and fi ltered messages
Conditional messages are printed only when a given condition is satisfi ed. In some
way, they are like conditional breakpoints using debugging messages. To use them,
we have the ROS_<LEVEL>[_STREAM]_COND[_NAMED] functions; note that they can
be named messages as well. The following are the examples of the example2 node:

 // Conditional messages:
 ROS_INFO_STREAM_COND(
 val < 0.,
 "My conditional INFO stream message; val (" << val << ") < 0"
);
 ROS_INFO_STREAM_COND(
 val >= 0.,
 "My conditional INFO stream message; val (" << val << ") >= 0"
);

 // Conditional Named messages:
 ROS_INFO_STREAM_COND_NAMED(
 "cond_named_msg", val < 0.,
 "My conditional INFO stream message; val (" << val << ") < 0"
);
 ROS_INFO_STREAM_COND(
 "cond_named_msg", val >= 0.,
 "My conditional INFO stream message; val (" << val << ") >= 0"
);

Filtered messages are similar to conditional messages in essence, but they allow
us to specify a user-defi ned fi lter that extends ros::console::FilterBase.
We must pass a pointer to such a fi lter in the fi rst argument of a macro with
the format ROS_<LEVEL>[_STREAM]_FILTER[_NAMED]. The following example
is taken from the example2 node:

 struct MyLowerFilter : public ros::console::FilterBase {
 MyLowerFilter(const double& val) : value(val) {}

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[74]

 inline virtual bool isEnabled()
 {
 return value < 0.;
 }

 double value;
 };

 struct MyGreaterEqualFilter : public ros::console::FilterBase {
 MyGreaterEqualFilter(const double& val) : value(val) {}

 inline virtual bool isEnabled()
 {
 return value >= 0.;
 }

 double value;
 };

 MyLowerFilter filter_lower(val);
 MyGreaterEqualFilter filter_greater_equal(val);

 ROS_INFO_STREAM_FILTER(
 &filter_lower,
 "My filter INFO stream message; val (" << val << ") < 0"
);
 ROS_INFO_STREAM_FILTER(
 &filter_greater_equal,
 "My filter INFO stream message; val (" << val << ") >= 0"
);

More messages – once, throttle, and
combinations
It is also possible to control how many times a given message is shown. We can print
it only once with ROS_<LEVEL>[_STREAM]_ONCE[_NAMED]. This kind of message
is useful in loops where we do not want to output so many messages for effi ciency
reasons, and it is enough to know that we entered.

 for(int i = 0; i < 10; ++i) {
 ROS_INFO_STREAM_ONCE(
 "My once INFO stream message; i = " << i
);
 }

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3

[75]

This code from the example2 node will show the message only once for i == 0.

However, it is usually better to show the message at every iteration. This is where we
can use throttle messages. They have the same format as that of the ONCE message, but
if you replace ONCE with THROTTLE they will have Duration as the fi rst argument; that
is, it is printed only at the specifi ed time interval:

 for(int i = 0; i < 10; ++i) {
 ROS_INFO_STREAM_ONCE(
 2,
 "My once INFO stream message; i = " << i
);
 ros::Duration(1).sleep();
 }

Finally, note that named, conditional, and once/throttle messages can be combined
together for all the available levels.

Nodelets also have some support in terms of logging and debugging messages.
Since they have their own namespace, they have a specifi c name to differentiate the
messages of one nodelet from another. Simply, all the macros shown so far are valid,
but instead of ROS_* we have NODELET_*. These macros will only compile inside
nodelets . Also, they operate by setting up a named logger, with the name of the
nodelet running, so that you ca n differentiate between the output of two nodelets of
the same type running in the same nodelet manager. Another advantage of nodelets
is that they will help you turn one specifi c nodelet to the DEBUG level, instead of all
the nodelets of a specifi c type.

Using rosconsole and rxconsole to modify the
debugging level on the fl y
A logging message integrates with a series of tools to visualize and confi gure them.
The ROS framework comes with an API known as rosconsole that was used to some
extent in the previous sections. We advised you to consult the API for more advanced
features, but we believe that this book covers everything a regular robotics user or
developer might need.

Apart from the API to confi gure the logging message in your nodes, ROS provides a
graphical tool, which is part of the rxtools package. This tool is rxconsole, and you
only have to type it in the command line to see the graphical interface that allows
seeing, inspecting, and confi guring the logging subsystem of all running nodes.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[76]

In order to test this, we are going to use example3, so we will run roscore in one
terminal and the node in another using the following command line:

rosrun chapter3_tutorials example3

Now, with the node running, we will open another terminal and run rxconsole. The
following window will open; note that you can also run rxconsole fi rst. So the logging
message will now appear immediately as shown in the following screenshot:

Once we have our example3 node running, we will start to see messages as shown in
the following screenshot:

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3

[77]

In the table, we have several columns that give information (aligned in order, as
shown in the preceding screenshot) about the message itself, its severity, the node
that generated the message and the timestamp, the topic (the /rosout aggregator
from the ROS server is usually with it), and the location of the logging macro in
the source code of the node.

We can click on the Pause button to stop receiving new messages, and click on it
again to resume monitoring. For each message in the table, we can click on Pause
to see all its details as shown in the following screenshot for the last message of
the previous screenshot:

One of the great features of rxconsole is the ability to fi lter messages. The most
basic way to fi lter is by severity level. If we want to see only the FATAL and ERROR
messages in our example, we have to unselect the other severity levels as shown
in the following screenshot:

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[78]

Immediately, we will see only the messages with FATAL and ERROR severity levels.
Additionally, we can fi lter (include or exclude) by message content, node name,
location, or topic name, and also using regular expression in our queries. The following
screenshot shows an example in which we fi ltered the messages to show only those
with the word named in the message for all the severity levels:

Note that we can add more fi lter entries (as much as we want) and also remove or
disable the ones defi ned.

We can also remove all the messages captured by rxconsole by clicking on the Clear
button. The Setup button allows confi guring of the diagnostic aggregator topic, which
is typically rosout_agg, and the number of messages that the GUI keeps in its history
before rolling over (as shown in the following screenshot). Note that the diagnostic
aggregator is just a sink in the ROS server that receives all the logging messages. This
way, we can inspect which devices are failing or how are they working. An advanced
developer might fi nd it useful to learn about the diagnostic API to use a higher layer
to build hierarchical layout that is already supported and used for complex systems
or robots.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3

[79]

Finally, we can set the logger severity level for each named logger. By default,
each node has a logger with its package name, but we also can defi ne named loggers
using the NAMED macros described in the previous sections. For the example3 node,
we have the ros.chapter3_tutorials and ros.chapter3_tutorials.named_msg
loggers. If we click on the Levels... button, we will see the following screenshot:

Here, we can select the example3 node and then the logger in order to set its level.
Note that there are some internal loggers that you can use apart from the ones
mentioned before. In the preceding screenshot, we set the DEBUG severity level
for the ros.chapter3_tutorials.named_msg logger so that all the messages
with this level or higher are shown; that is, all messages in this case.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[80]

Inspecting what is going on
When our system is running, we might have several nodes and even more topics
publishing messages and connected by subscription among nodes. Also, we might
have some nodes providing services as well. For large systems, it is important to
have some tools that let us see what is running at a given time. ROS provides us
with some basic but powerful tools to do so, and also to detect a failure in any part
of the nodes graph; that is, the architecture that emerges from the connection of
ROS nodes using topics.

Listing nodes, topics, and services
In our honest opinion, we should start with the most basic level of introspection.
We are going to see how to obtain the list of nodes running, and topics and services
available at a given time. Although extremely simple, this is very useful and robust.

• To obtain the list of nodes running use:
rosnode list

• The topics of all nodes are listed using:
rostopic list

• And, similarly, all services are shown by:
rosservice list

We recommend you to go back to Chapter 2, The ROS Architecture with Examples to see
how these commands also allow you to obtain the message type sent by a particular
topic, as well as its fi elds, using rosmsg show.

Inspecting the node's graph online with
rxgraph
The simplest way to illustrate the current state of an ROS session is with a directed
graph that shows the nodes running on the system and the publisher-subscriber
connections among these nodes through the topics. The ROS framework provides
some tools to generate such a node's graph. The main tool is rxgraph, which shows
the node's graph during the system execution and allows us to see how a node
appears or disappears dynamically.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3

[81]

To illustrate how to inspect the nodes, topics, and services with rxgraph, we are going
to run the example4 and example5 nodes simultaneously with the following fi le:

roslaunch chapter3_tutorials example4_5.launch

The example4 node publishes in two different topics and calls a service. Meanwhile,
example5 subscribes to those topics and also has the service server attend the request
queries and provide the response. Once the nodes are running, we have the node's
topology as shown in the following screenshot:

In the preceding screenshot, we have nodes connected by topics. We also have the
ROS server node as rosout, as well as the rosout topics that publish the log message
for the diagnostic aggregator in the server as we have seen previously. There is also
a panel to the right with information regarding the node selected. In the preceding
screenshot, we have information regarding the server; that is, its IP and port for the
remote nodes, topics, and connections.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[82]

We can enable the quiet view so that the ROS server is omitted. This is useful for
large systems because it is always there but does not provide any information on
our system's topology itself. To see the node service, we turn on the node and will
see the right-hand panel. In the following screenshot, we have highlighted the
speed service of the example5 node:

When there is a problem in the system, the nodes appear in red all the time (not
just when we hover the mouse over). In such cases, it is useful to select All topics
to show unconnected topics as well. Sometimes, the problems are a consequence
of a misspelled topic name.

When running nodes in different machines, rxgraph shows its great high-level
debugging capabilities since it shows whether the nodes see each other from one
machine to the other.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3

[83]

When something weird happens – roswtf!
ROS also has another tool to detect potential problems in all the elements of a given
package. Just move with roscd to the package you want to analyze, and then run
roswtf. In the case of chapter3_tutorials, we have the following output:

Normally , we should expect no error or warning but some of them are innocuous.
In the preceding screenshot, we see that roswtf has detected that it was not able
to connect with the example4 node. This happens because this node has a sleep
instruction, and if analyzed, this might occur while sleeping. The other errors are
a consequence of this one. The purpose of roswtf is to signal potential problems,
and then we are responsible for checking whether they are real or meaningless
ones, as in the previous case.

Plotting scalar data
Scalar data can easily be plotted with some generic tools already available in ROS.
Scalar data cannot be plotted, rather each scalar fi eld has to be plotted separately.
This is the reason we talk about scalar data because most nonscalar structures are
better represented with ad hoc visualizers, some of which we will see later; for
instance, images, poses, and orientation/attitude.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[84]

Creating a time series plot with rxplot
In ROS, scalar data can be plotted as a time series over the time provided by
the timestamps of the messages. Then, we will plot our scalar data in the y axis.
The tool to do so is rxplot. It has a powerful argument syntax that allows us to
specify several fi elds of a structured message (in a concise manner as well).

To show rxplot in action, we are going to use the example4 node since it publishes
a scalar and a vector (nonscalar) in two different topics, which are temp and accel
respectively. The values put in these messages are synthetically generated, so they
have no actual meaning but are useful for plotting demonstration purposes. So, start
by running the node with:

rosrun chapter3_tutorials example4

With rostopic list, you will see the topics temp and accel available. Now, instead
of the typical rostopic echo <topic>, we will use rxplot so that we can see the
values graphically over time.

To plot a message, we must know its format; use rosmg show <msg type> if you
do not know it. In the case of scalar data, we always have a fi eld called data that has
the actual value. Hence, for the temp topic, which is of the type Int32, we will use:

rxplot /temp/data

With the node running, we will see a plot that changes over time with incoming
messages as shown in the following screenshot:

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3

[85]

For the accel topic provided by the example node, in which we have a Vector3
message (as you can check with rostopic type /accel), we can plot three fi elds of
the vector in a single plot, which is a great feature of rxplot. The Vector3 message
has the fi elds x, y, and z. We can specify the fi elds separated by commas (,) or in a
more concise manner as follows:

rxplot /accel/x:y:z

The plot will look like this:

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[86]

We can also plot each fi eld in separate axes as shown in the next screenshot. To do
so, we separate each fi eld by a blank space; remember that when you use commas,
you must not insert any spaces. Therefore, if we run rxplot /accel/x /accel/y /
accel/z, the plot will show like this:

Other plotting utilities – rxtools
The rxplot tool is part of the rxtools package along with other tools. You might
go to this package to see more GUI or batch tools that can help in the development
of robotic applications and the process of debugging, monitoring, and introspecting.
It is also important to know that being a node (inside this package), these tools can
also be run from a launch fi le.

In the case of rxplot, in order to run it from a launch fi le, we must put the following
code inside it:

 <node pkg="rxtools" type="rxplot" name="accel_plot"
 args="/accel/x:y:z"/>

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3

[87]

Note that we use the args argument of the node element in the launch fi le to pass
rxplot the arguments.

Visualization of images
In ROS, we have a node that allows us to show images coming from a camera on
the fl y. You only need a camera to do this. It is also possible to reproduce a video
with a simple node in ROS but here we are going to use your laptop's webcam.
The example6 node implements a basic camera capture program using OpenCV
and ROS bindings to convert cv::Mat images into ROS image messages that can be
published in a topic. This node publishes the camera frames in the /camera topic.

We are only going to run the node with a launch fi le created to do so. The code inside
the node is still new for the reader, but in the upcoming chapters, we will cover how
to work with cameras and images in ROS so that we can come back to this node and
understand every bit of the code:

roslaunch chapter3_tutorials example6.launch

Once the node is running, we can list the topics (rostopic list) and see that the
/camera topic is there. A straightforward way to see that we are actually capturing
images is to see at which frequency we are receiving images in the topic with rostopic
hz /camera. It should be something like 30 Hz usually, but at least some value must
be seen:

subscribed to [/camera]

average rate: 30.131

min: 0.025s max: 0.045s std dev: 0.00529s window: 30

Visualizing a single image
Being an image, we cannot use rostopic echo /camera because the amount of
information in plain text would be very huge and also diffi cult to analyze. Hence,
we are going to use the following code:

rosrun image_view image_view image:=/camera

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[88]

This is the image_view node, which shows the images in the given topic (the image
argument) in a window, as shown in the following screenshot:

This way we can visualize every image or frame published in a topic in a very simple
and fl exible manner, even over a network. If you right-click on the window, you can
save the current frame in the disk, usually in your home directory or ~/.ros.

FireWire cameras
In the case of FireWire cameras, ROS also provides a larger set of tools that support
calibration, both mono and stereo, as well as a way to change the camera parameters
dynamically with the reconfigure_gui node. Usually, FireWire cameras allow
changing some confi guration parameters of the sensor, such as the frame rate, shutter
speed, and brightness. ROS already comes with a driver for FireWire (IEEE 1394, a and
b) cameras that can be run using the following command:

rosrun camera1394 camera1394_node

Once the camera is running, we can confi gure its parameters with the reconfigure_
gui node, in which the fi rst thing we do is the selection of the node we want to
confi gure. We only have to run this:

rosrun dynamic_reconfigure reconfigure_gui

We will see an interface with all the confi guration parameters and a series of slider
or comboboxes, depending on the data type, to set its value within the valid limits.
The following screenshot illustrates this for a particular FireWire camera:

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3

[89]

Note that we will cover how to work with cameras in later chapters. Also, note that
the parameters reconfi guration, from the developer point of view, will be explained
in detail in Chapter 6, Computer Vision.

Another important utility that ROS gives to the user is the possibility to calibrate
the camera. It has a calibration interface built on top of the OpenCV calibration API.
We will also cover this in Chapter 6, Computer Vision, when we see how to work with
cameras. This tool is very simple to use; so, once the camera is running, we only have
to show some views of a calibration pattern (usually a checkerboard) using this:

rosrun camera_calibration cameracalibrator.py --size 8x6 --square 0.108
image:=/camera/image_raw camera:=/camera

You can see the checkerboard pattern in the following screenshot:

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[90]

After the calibration, the result will be the so-called camera matrix and distortion
coeffi cients along with the views used to compute it. Although we will see this later
in the book, it is important to say that in the case of the FireWire camera, all the
calibration information is saved in a fi le that is pointed by the camera confi guration.
Hence, the ROS system allows seamless integration so that we can use the image_
proc tool to rectify the images; that is, to correct the distortion as well as to de-Bayer
the raw images if they were in Bayer.

Working with stereo vision
To some extent, ROS also supports stereo vision. If you have a stereo pair, you can
calibrate both cameras simultaneously as well as the baseline between them. For this,
we will use:

rosrun camera_calibration cameracalibrator.py --size 8x6 --square 0.108
right:=/my_stereo/right/image_raw left:=/my_stereo/left/image_raw right_
camera:=/my_stereo/right left_camera:=/my_stereo/left

This command runs the Python camera calibrator node and receives two initial
parameters that indicate the type of calibration pattern. In particular, the size
specifi ed is the number of inner corners (8 x 6 in the example) and the dimensions
of the square cells. Then, the topics that publish the right and left raw images and
the respective camera information topics are given. In this case, the interface will
show the images from the left and right cameras and the results will be for each as
well. They will include the baseline as well that is useful for some stereo tools.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3

[91]

The stereo-specifi c tools allow you to compute the disparity image (refer to the
following image), which is actually a way to obtain a 3D point cloud that represents
the depth of each pixel in the real world. Therefore, the calibration of the camera
and their baseline gives a 3D point cloud, up to some error and noise distribution
that represents the real 3D position of each pixel in the world along with its color
(or texture).

Similar to monocular cameras, we can generate the disparity image using stereo along
with the rectifi ed left and right images; in this case, using stereo_image_proc.

3D visualization
As we have seen in the previous section, there are some devices (such as stereo
cameras, 3D laser, and the Kinect sensor) that provide 3D data, usually in the form of
point clouds (organized or not). For this reason, it is extremely useful to have tools that
visualize this type of data. In ROS, we have rviz, which we will see in the following
section, that integrates an OpenGL interface with a 3D world that represents sensors'
data in a modeled world. To do so, we will see that, for complex systems, the frame of
each sensor and the transformations among them is of crucial importance.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[92]

Visualizing data on a 3D world using rviz
With roscore running, we only have to execute the following code to start rviz:

rosrun rviz rviz

We will see the graphical interface in the following screenshot:

To the left, we have the Displays pane, in which we have a tree list of the different
elements in the world, which appears in the middle. In this case, we have some
elements that are already loaded. Indeed, this confi guration or layout is saved in the
config/example7.cvg fi le, which can be loaded by navigating to File | Open Confi g.

Below the Displays area, we have the Add button that allows the addition of more
elements. Also, note that there are some global options, which are basically tools
to set the fi xed frame in the world with respect to which others might move. Then,
we have Axes (Axes) and Grid (Grid) as a reference for the rest of the elements.
In this case, for the example7 node, we are going to see Markers (Markers) and
PointCloud2 (PointCloud2).

Finally, at the status bar, we have information regarding time, and to the right are
the menus for the way to navigate in the world and select and manipulate elements.

Now we are going to run the example7 node:

roslaunch chapter3_tutorials example7.launch

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3

[93]

In rviz, we are going to set frame_id of the marker, that is frame_marker, in the fi xed
frame. We will see a red cube marker moving as shown in the following screenshot:

Similarly, if we set the fi xed frame to frame_pc, we will see a point cloud that
represents a plane of 200 x 100 points as shown in the following screenshot:

The list of supported built-in types in rviz also includes cameras and images,
which are shown in a window similar to image_view. In the case of the camera,
its calibration is used and in the case of stereo images it allows us to overlay the
point cloud. We can also see laser scan data from range lasers and range cone
values from IR/SONAR sensors.

Basic elements can also be represented, such as a polygon, several kinds of markers,
a map (usually a 2D occupancy grid map), and even interactive marker objects,
which allow users to set a pose (position and orientation) in the 3D world.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[94]

For the navigation stack that we will cover in the next chapters, we have several
data types that are also supported such as odometry (plots the robot odometry
poses), and path (draws the path followed by the robot), which is a succession of
pose objects. Among other types, it is also worth mentioning the robot model, which
shows the CAD model of all the robot parts, taking into account the transformation
among the frame of each element. Indeed, TF (transform frame) elements can also
be drawn, which is very useful for debugging the frames in the system; we will see
an example in the next section.

This 3D graphical interface can also be embedded in the new rqt_gui GUI. We can
also develop plugins for new types, and much more. However, we believe that the
information given here is usually enough, and we recommend you consult the rviz
documentation for further details and advanced topics.

The relationship between topics and frames
All topics must have a frame if they are publishing data from a particular sensor
that have a physical location in the real world; for example, an accelerometer that is
located in some position with respect to the mass center of the robot. If we integrate
the accelerations to estimate the robot's velocities or its pose, we must take the
transformation between t he base (mass center) and the accelerometer frames. In ROS,
the messages with a header, apart from the timestamp (also extremely important to
put or synchronize different messages), can be assigned frame_id, which gives a
name to the frame it belongs to.

But the frames itself are not very useful when we have more than a single device in
our robot, each in a different frame/pose. We need the transformation among them.
Actually, we have a frame transformation tree that usually has the base frame as
its root. Then, we can see in rviz how this and other frames move with respect to
the world frame.

Visualizing frame transformations
To illustrate how to visualize the frame transformations, we are going to use the
turtlesim example. Run the following launch fi le then:

roslaunch turtle_tf turtle_tf_demo.launch

This is a very basic example with the purpose of illustrating the TF visualization in
rviz. Note that for the different possibilities offered by the TF API, you should refer
to later chapters of this book, in particular Chapter 7, Navigation Stack – Robot Setups
and Chapter 8, Navigation Stack – Beyond Setups. For now, it is enough to know that
they allow making the computations in one frame and then transforming them to
another, including time delays.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3

[95]

It is also important to know that TFs are published at a certain frequency in the
system, so it is like a subsystem where we can traverse the TF tree to obtain the
transformation between any frames in it, and we can do it in any node of our
system just by consulting TF.

If you receive an error, it is probably because the listener died on the launch startup,
as another node that was required was not yet ready; so, please run the following on
another terminal to start it again:

rosrun turtle_tf turtle_tf_listener

Now you should see a window with two turtles (the icon might differ) where one
follows the other. You can control one of the turtles with the arrow keys but with
the focus on the terminal for which the launch fi le is run. The following screenshot
shows how one turtle has been following the other, after moving the one we can
control for some time:

Each turtle has its own frame. We can see them in rviz:

rosrun rviz rviz

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[96]

Now, instead of TurtleSim, we are going to see how the turtles' frames move in
rviz while we move our turtle with the arrow keys. We have to set the fi xed frame
to /world, and then add the TF tree to the left area. We will see that we have the /
turtle1 and /turtle2 frames, both as children of the /world frame. In the world
representation, the frames are shown as axes. The /world frame is fi xed because we
confi gured it as such in rviz. It is also the root frame and the parent of the turtles'
frames. This is represented with a yellow arrow that has a pink end. Also, set the
view of the world to TopDownOrtho because this makes it easier to see how the
frames move in this case, as they move only on the ground (2D plane). Also, you
may fi nd it useful to translate the world center, which is done with the mouse,
as you do to rotate, but with the Shift key pressed.

In the following screenshot, you can see how the two frames of each turtle
are shown with respect to the /world frame. We advise the user to play with
the example to see it in action, in real time. Also, you might change the fi xed
frame. Note that config/example_tf.vcg is provided to give the basic rviz
confi guration used in this example.

Saving and playing back data
Usually, when we work with robotic systems, the resources are shared, not always
available, or the experiments cannot be done regularly because of the cost or time
required to prepare and perform them. For this reason, it is good practice to record
the data of the experiment session for future analysis and to work, develop, and test
our algorithms. However, the process of saving good data so that we can reproduce
the experiment offl ine is not trivial. Fortunately, we have powerful tools in ROS that
already solve this problem.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3

[97]

ROS can save all messages published by the nodes through the topics. It has the
ability to create a bag fi le that contains the messages as they are with all their fi elds
and timestamps. This allows reproducing the experiment offl ine and simulating the
real condition, which is the latency of message transmission. Moreover, ROS tools
do all this effi ciently with a high bandwidth and an adequate manner to organize
the saved data.

In the next section, we explain the tools provided by ROS to save and playback
the data stored in bag fi les, which use a binary format designed for and by ROS
developers. We will also see how to manage these fi les; that is, inspect the content
(number of messages, topics, and so on), compress, and split or merge several
of them.

What is a bag fi le?
A bag fi le is a container of messages sent by topics that are recording during a session
using a robot or some nodes. In brief, they are the logging fi les for the messages
transferred during the execution of our system and allow us to playback everything
even with the time delays, since all messages are recorded with a timestamp; not only
for the timestamp in the header but also for the packets that have it. The difference
between the timestamp used for recording and the one in the header is that the fi rst
one is set by the message that is recorded, while the other is set by the producer/
publisher of the message.

The data stored in a bag fi le is in the binary format. The particular structure of
this container allows for an extremely fast recording bandwidth, which is the most
important concern while saving data. Also, the size of the bag fi le is relevant but is
usually at the expense of speed. Anyway, we have the option to compress the fi le
on the fl y with the bz2 algorithm; just use the -j parameter when you record with
rosbag record, as you will see in the following section.

Every message is recorded along with the topic that published it. Therefore, we can
specify which topics to record or just mention all (with -a). Later, when we play the
bag fi le back, we can also select a particular subset of topics of all the ones in the bag
fi le by indicating the names of the topics we want to be published.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[98]

Recording data in a bag fi le with rosbag
The fi rst thing we have to do to start is simply record the data. We are going to use a
very simple system, our example4 node, as an example. Hence, we fi rst run the node:

rosrun chapter3_tutorials example4

Now we have two options. First, we can record all the topics:

rosbag record -a

Or, second, record only some specifi c (user-defi ned) topics. In this case, it will make
sense to record only the example4 topics, so we will use the following:

rosbag record /temp /accel

By default, when we run the preceding command, the rosbag program subscribes
to the node and starts recording the message in a bag fi le in the current directory
with data as the name. Once you have fi nished the experiment or you want to stop
recording, you only have to hit Ctrl + C. The following is an example of recording
the data and the resulting bag fi le:

[INFO] [1357815371.768263730]: Subscribing to /temp

[INFO] [1357815371.771339658]: Subscribing to /accel

[INFO] [1357815371.774950563]: Recording to 2013-01-10-10-56-11.bag.

You can see more options with rosbag help record that includes things such
as the bag fi le size, the duration of the recording, and options to split the fi les
into several ones of a given size. As we have mentioned before, the fi le can be
compressed on the fl y (using the -j option). In our honest opinion, this is only
useful for small bandwidths because it also consumes some CPU time and might
produce some message dropping. Also, we can increase the buffer (-b) size for
the recorder in MB, which defaults to 256 MB, but it can be increased to some
GB if the bandwidth is very high (especially with images).

It is also possible to include the call to rosbag record into a launch fi le. To do so,
we must add a node like this:

<node pkg="rosbag" type="record" name="bag_record"
 args="/temp /accel"/>

Note that the topics and other arguments to the command are passed using the
args argument. Also, it is important to say that when running from the launch
fi le, the bag fi le is created by default in ~/.ros, unless we give the name of the
fi le with -o (prefi x) or -O (full name).

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3

[99]

Playing back a bag fi le
Now that we have a bag fi le recorded, we can use it to play back all the messages
of the topics inside it. We need roscore running and nothing else. Then, we move
to the folder with the bag fi le we want to play (there are two examples in the bag
folder of this chapter's tutorials) and do this:

rosbag play 2013-01-10-10-56-11.bag

We will see the following output:

[INFO] [1357820252.241049890]: Opening bag/2013-01-10-10-56-11.bag

Waiting 0.2 seconds after advertising topics... done.

Hit space to toggle paused, or 's' to step.

 [RUNNING] Bag Time: 1357815375.147705 Duration: 2.300787 / 39.999868

In the terminal where we are playing the bag fi le, we can pause (hit Space bar) or
move step by step (hit S), and, as usual, use Ctrl + C to fi nish it immediately. Once
we reach the end of the fi le, it will close, but there is an option to loop (-l) that
sometimes might be useful.

Automatically, we will see the topics with rostopic list:

/accel

/clock

/rosout

/rosout_agg

/temp

The /clock topic is part of the fact that we can instruct the system clock to simulate
a faster playback. This can be confi gured using the -r option. In the /clock topic, the
time for simulation at a confi gurable frequency with the --hz argument (it defaults
to 100 Hz) is published.

Also, we could specify a subset of the topics in the fi le to be published. This is done
with the --topics option. In order to see what we have inside the fi le, we would use
rosbag info <bag_file>, which we will explain in the next section.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[100]

Inspecting all the topics and messages in a
bag fi le using rxbag
There are two main ways to see what we have inside a bag fi le. The fi rst one is very
simple. We just type rosbag info <bag_file> and the result is something like this:

We have information about the bag fi le itself, such as the creation date, duration,
size, as well as the number of messages inside, and the compression (if any). Then,
we have the list of data types inside the fi le, and fi nally the list of topics with their
corresponding name, number of messages, and type.

The second way to inspect a bag fi le is extremely powerful. It is a graphical interface
named rxbag that also allows playing back the fi les, viewing the images (if any),
plotting scalar data, and also the raw structure of the messages. We only have to pass
the name of the bag fi le, and we will see something like the following screenshot
(for the previous bag fi le):

We have a timeline for all the topics where each message appears with a mark.
In the case of images, we can enable the thumbnails to see them in the timeline
(marked with the mouse pointer).

In the following screenshot, we can see how to access the Raw, Plot, and Image
(if the topic is of the type Image) views for the topics in the fi le. This pop-up menu
appears with a right-click over the timeline.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Chapter 3

[101]

For /accel, we can plot all the fi elds in a single axis. To do so, once we are in the
Plot view, we click on the gear button/icon and then select every fi eld. Note that
we can remove them later or create a different axis (in the bottom-right window).
The plot is generated for all the values in the fi le, and a vertical line shows the
current position in the playback.

Note that we must have clicked on the Play button at least once to be able to plot the
data. Then we can play, pause, stop, and move to the beginning or the end of the fi le.

The images are straightforward, and a simple window appears with the current
frame with options to save them as image fi les in the disk.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Debugging and Visualization

[102]

rqt plugins versus rx applications
Since ROS Fuerte, the rx applications or tools are deprecated and we should instead
use the rqt nodes. They are basically the same, only with a few of them incorporated
with small updates, bug fi xes, and new features. Also, they can be loaded as plugins
into a single window/application, which is rqt_gui. We show the equivalent for the
tools shown in this chapter in the following list:

• rxconsole is replaced by rosrun rqt_console rqt_console
• rxgraph is replaced by rosrun rqt_graph rqt_graph
• rxplot is replaced by rosrun rqt_plot rqt_plot
• rxbag is replaced by rosrun rqt_bag rqt_bag

Furthermore, being plugins that can also be run standalone, there exist more tools,
such as a shell, a topic publisher, and a message type viewer. Even rviz has a plugin
named rqt_rviz that can be integrated in the new rqt_gui interface; all this is fully
integrated in ROS Groovy and Hydro where rx tools are deprecated but still in the
bundle. The same happens for ROS Fuerte, which was the fi rst release to incorporate
the rqt tools.

Summary
After reading and running the code of this chapter, you will have learned to use
many tools that will enable you to develop robotic systems faster, debug errors,
and visualize your results so you can evaluate their quality or validate them. Some
of the specifi c concepts and tools you will exploit the most in your life as a robotic
developer are summarized as follows:

• Now you know how to include logging messages in your code with different
levels of verbosity, which will help you debug errors in your nodes. For this
purpose, you could also use the powerful tools included in ROS, such as
the rxconsole interface. Additionally, you can also inspect or list the nodes
running, the topics published, and the services provided in the whole system
while running. This includes the inspection of the node graph using rxgraph.

• Regarding the visualization tools, you should be able to plot scalar data
using rxplot for a more intuitive analysis of certain variables published by
your nodes. Similarly, you can view more complex types (nonscalar ones).
This includes images and 3D data using rviz.

• Finally, recording and playing back the messages of the topics available is now
in your hands with rosbag. And you also know how to view the contents of a
bag fi le with rxbag. This allows you to record the data from your experiments
and process them later with your AI or robotics algorithms.

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/learning-ros-for-robotics-programming/book

Where to buy this book
You can buy Learning ROS for Robotics Programming from the Packt Publishing

website:

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please

read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and

most internet book retailers.

www.PacktPub.com

For More Information:
www.packtpub.com/learning-ros-for-robotics-programming/book

http://www.packtpub.com/Shippingpolicy
http://www.packtpub.com/
http://www.packtpub.com/learning-ros-for-robotics-programming/book

