
G-Fact 1 |
(Sizeof is an
operator)

G-Fact 2

G-Fact 3

G-Fact 4

G-Fact 5

G-Fact 6

G-Fact 7

G-Fact 8

How are
variables
scoped in C
– Static or
Dynamic?

Scope rules
in C

How Linkers
Resolve
Global
Symbols
Defined at
Multiple
Places?

Courses

Write an
Article

Memory Layout of C Programs - GeeksforGeeks https://www.geeksforgeeks.org/memory-layout-of-...

1 de 10 24/1/19 19:39

Complicated
declarations
in C

Redeclaration
of global
variable in C

Data Types
in C

Use of bool
in C

Integer
Promotions
in C

Comparison
of a float
with a value
in C

Storage
Classes in C

Static
Variables in
C

How to
deallocate
memory
without
using free()
in C?

calloc()
versus
malloc()

How does

Memory Layout of C Programs - GeeksforGeeks https://www.geeksforgeeks.org/memory-layout-of-...

2 de 10 24/1/19 19:39

free() know
the size of
memory to
be
deallocated?

Use of
realloc()

int (1 sign bit
+ 31 data
bits)
keyword in C

Program
error signals

Why array
index starts
from zero ?

TCP Server-
Client
implementation
in C

How to
return
multiple
values from
a function in
C or C++?

Dynamic
Memory
Allocation in
C using
malloc(),
calloc(),
free() and
realloc()

Commonly

Memory Layout of C Programs - GeeksforGeeks https://www.geeksforgeeks.org/memory-layout-of-...

3 de 10 24/1/19 19:39

Memory Layout of C Programs
A typical memory representation of C program consists of following sections.

1. Text segment

2. Initialized data segment

3. Uninitialized data segment

4. Stack

5. Heap

A typical memory layout of a running process

Asked C
Programming
Interview
Questions |
Set 3

Memory Layout of C Programs - GeeksforGeeks https://www.geeksforgeeks.org/memory-layout-of-...

4 de 10 24/1/19 19:39

1. Text Segment:

A text segment , also known as a code segment or simply as text, is one of the sec‐

tions of a program in an object file or in memory, which contains executable instruc‐

tions.

As a memory region, a text segment may be placed below the heap or stack in order to

prevent heaps and stack overflows from overwriting it.

Usually, the text segment is sharable so that only a single copy needs to be in memory

for frequently executed programs, such as text editors, the C compiler, the shells, and

so on. Also, the text segment is often read-only, to prevent a program from acciden‐

tally modifying its instructions.

2. Initialized Data Segment:

Initialized data segment, usually called simply the Data Segment. A data segment is a

portion of virtual address space of a program, which contains the global variables and

static variables that are initialized by the programmer.

Note that, data segment is not read-only, since the values of the variables can be al‐

tered at run time.

This segment can be further classified into initialized read-only area and initialized

read-write area.

For instance the global string defined by char s[] = “hello world” in C and a C statement

like int debug=1 outside the main (i.e. global) would be stored in initialized read-write

area. And a global C statement like const char* string = “hello world” makes the string

literal “hello world” to be stored in initialized read-only area and the character pointer

variable string in initialized read-write area.

Ex: static int i = 10 will be stored in data segment and global int i = 10 will also be

stored in data segment

3. Uninitialized Data Segment:

Uninitialized data segment, often called the “bss” segment, named after an ancient as‐

sembler operator that stood for “block started by symbol.” Data in this segment is ini‐

tialized by the kernel to arithmetic 0 before the program starts executing

uninitialized data starts at the end of the data segment and contains all global vari‐

ables and static variables that are initialized to zero or do not have explicit initialization

in source code.

Memory Layout of C Programs - GeeksforGeeks https://www.geeksforgeeks.org/memory-layout-of-...

5 de 10 24/1/19 19:39

For instance a variable declared static int i; would be contained in the BSS segment.

For instance a global variable declared int j; would be contained in the BSS segment.

4. Stack:

The stack area traditionally adjoined the heap area and grew the opposite direction;

when the stack pointer met the heap pointer, free memory was exhausted. (With mod‐

ern large address spaces and virtual memory techniques they may be placed almost

anywhere, but they still typically grow opposite directions.)

The stack area contains the program stack, a LIFO structure, typically located in the

higher parts of memory. On the standard PC x86 computer architecture it grows to‐

ward address zero; on some other architectures it grows the opposite direction. A

“stack pointer” register tracks the top of the stack; it is adjusted each time a value is

“pushed” onto the stack. The set of values pushed for one function call is termed a

“stack frame”; A stack frame consists at minimum of a return address.

Stack, where automatic variables are stored, along with information that is saved each

time a function is called. Each time a function is called, the address of where to return

to and certain information about the caller’s environment, such as some of the ma‐

chine registers, are saved on the stack. The newly called function then allocates room

on the stack for its automatic and temporary variables. This is how recursive functions

in C can work. Each time a recursive function calls itself, a new stack frame is used, so

one set of variables doesn’t interfere with the variables from another instance of the

function.

5. Heap:

Heap is the segment where dynamic memory allocation usually takes place.

The heap area begins at the end of the BSS segment and grows to larger addresses

from there.The Heap area is managed by malloc, realloc, and free, which may use the

brk and sbrk system calls to adjust its size (note that the use of brk/sbrk and a single

“heap area” is not required to fulfill the contract of malloc/realloc/free; they may also

be implemented using mmap to reserve potentially non-contiguous regions of virtual

memory into the process’ virtual address space). The Heap area is shared by all

shared libraries and dynamically loaded modules in a process.

Examples.

The size(1) command reports the sizes (in bytes) of the text, data, and bss segments.

(for more details please refer man page of size(1))

Memory Layout of C Programs - GeeksforGeeks https://www.geeksforgeeks.org/memory-layout-of-...

6 de 10 24/1/19 19:39

1. Check the following simple C program

[narendra@CentOS]$ gcc memory-layout.c -o memory-layout

[narendra@CentOS]$ size memory-layout

text data bss dec hex filename

960 248 8 1216 4c0 memory-layout

2. Let us add one global variable in program, now check the size of bss (highlighted in

red color).

[narendra@CentOS]$ gcc memory-layout.c -o memory-layout

[narendra@CentOS]$ size memory-layout

text data bss dec hex filename

 960 248 12 1220 4c4 memory-layout

3. Let us add one static variable which is also stored in bss.

[narendra@CentOS]$ gcc memory-layout.c -o memory-layout









#include <stdio.h>

int main(void)
{
 return 0;
}









#include <stdio.h>

int global; /* Uninitialized variable stored in bss*/

int main(void)
{
 return 0;
}









#include <stdio.h>

int global; /* Uninitialized variable stored in bss*/

int main(void)
{
 static int i; /* Uninitialized static variable stored in bss */
 return 0;
}

Memory Layout of C Programs - GeeksforGeeks https://www.geeksforgeeks.org/memory-layout-of-...

7 de 10 24/1/19 19:39

[narendra@CentOS]$ size memory-layout

text data bss dec hex filename

 960 248 16 1224 4c8 memory-layout

4. Let us initialize the static variable which will then be stored in Data Segment (DS)

[narendra@CentOS]$ gcc memory-layout.c -o memory-layout

[narendra@CentOS]$ size memory-layout

text data bss dec hex filename

960 252 12 1224 4c8 memory-layout

5. Let us initialize the global variable which will then be stored in Data Segment (DS)

[narendra@CentOS]$ gcc memory-layout.c -o memory-layout

[narendra@CentOS]$ size memory-layout

text data bss dec hex filename

960 256 8 1224 4c8 memory-layout

This article is compiled by Narendra Kangralkar. Please write comments if you find

anything incorrect, or you want to share more information about the topic discussed

above.

Source:

http://en.wikipedia.org/wiki/Data_segment









#include <stdio.h>

int global; /* Uninitialized variable stored in bss*/

int main(void)
{
 static int i = 100; /* Initialized static variable stored in DS*/
 return 0;
}








#include <stdio.h>

int global = 10; /* initialized global variable stored in DS*/

int main(void)
{
 static int i = 100; /* Initialized static variable stored in DS*/
 return 0;
}

Memory Layout of C Programs - GeeksforGeeks https://www.geeksforgeeks.org/memory-layout-of-...

8 de 10 24/1/19 19:39

http://en.wikipedia.org/wiki/Code_segment

http://en.wikipedia.org/wiki/.bss

http://www.amazon.com/Advanced-Programming-UNIX-Environment-2nd/dp

/0201433079

Recommended Posts:
Common Memory/Pointer Related bug in C Programs

IPC through shared memory

Memory leak in C++ and How to avoid it?

How to deallocate memory without using free() in C?

What is Memory Leak? How can we avoid?

Stack vs Heap Memory Allocation

MCQ on Memory allocation and compilation process

Memory Segmentation in 8086 Microprocessor

C | Dynamic Memory Allocation | Question 1

C | Dynamic Memory Allocation | Question 2

C | Dynamic Memory Allocation | Question 3

C | Dynamic Memory Allocation | Question 8

C | Dynamic Memory Allocation | Question 5

C | Dynamic Memory Allocation | Question 6

C | Dynamic Memory Allocation | Question 7

Article Tags : C C-Dynamic Memory Allocation system-programming

Practice Tags : C


19

To-do Done

2.6

Based on 156 vote(s)

Memory Layout of C Programs - GeeksforGeeks https://www.geeksforgeeks.org/memory-layout-of-...

9 de 10 24/1/19 19:39

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

Writing code in comment? Please use ide.geeksforgeeks.org, generate link and share the link here.

Load Comments Share this post!

710-B, Advant Navis Business Park,
Sector-142, Noida, Uttar Pradesh - 201305

feedback@geeksforgeeks.org

COMPANY
About Us
Careers

Privacy Policy
Contact Us

LEARN
Algorithms

Data Structures
Languages
CS Subjects

Video Tutorials

PRACTICE
Company-wise

Topic-wise
Contests

Subjective Questions

CONTRIBUTE
Write an Article
Write Interview

Experience
Internships

Videos

@geeksforgeeks, Some rights reserved

Memory Layout of C Programs - GeeksforGeeks https://www.geeksforgeeks.org/memory-layout-of-...

10 de 10 24/1/19 19:39

